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Abstract
Current climate control systems often rely on building

regulation maximum occupancy numbers for maintaining
proper temperatures. However, in many situations, there
are rooms that are used infrequently, and may be heated or
cooled needlessly. Having knowledge regarding occupancy
and being able to accurately predict usage patterns may al-
low significant energy-savings by intelligent control of the
L-HVAC systems. In this paper, we report on the deploy-
ment of a wireless camera sensor network for collecting data
regarding occupancy in a large multi-function building. The
system estimates occupancy with an accuracy of 80%. Using
data collected from this system, we construct multivariate
Gaussian and agent based models for predicting user mobil-
ity patterns in buildings. Using these models, we can predict
room usage thereby enabling us to control the HVAC systems
in an adaptive manner. Our simulations indicate a 14% re-
duction in HVAC energy usage by having an optimal control
strategy based on occupancy estimates and usage patterns.

1 Introduction
Heating ventilating and air conditioning (HVAC) systems ac-
count for 50% of the total energy budget in buildings [5].
Prior research has shown that energy savings are achievable
by regulating fresh air ventilation based on the total num-
ber of occupants in a building. This procedure is referred to
as demand-controlled ventilation, and studies suggest 10 to
15% of HVAC energy can be reduced in buildings that set
ventilation rates based on maximum occupancy [2].

In general, the approach used is to assume that all rooms
are occupied during working hours and not being used during
the night. However, it is obvious that this does not maximize
energy savings. Rooms are often left empty during part of
the day or perhaps are only used semi regularly, e.g. con-
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ference rooms. It would be more efficient to only condition
rooms during the times that are actually occupied. Using an
L-HVAC system (lighting, heating, venting, and air condi-
tioning system), various environmental aspects of room can
be controlled for energy savings. Thus, knowledge of occu-
pancy is crucial in order to maximize efficiency of a system.

If room occupancy is known, then specific strategies can
be used to condition the room optimally. The lack of reliable
data (both real time and model) for the movement of people
inside buildings may make many of these aspects difficult to
control efficiently. Although many modern buildings include
motion detectors and temperature and CO2 sensors for light
and air flow management, these sensors present some limita-
tions. Motion detectors provide an efficient way to detect oc-
cupancy, but they provide no information about the quantity
of people using the space since their output is a binary pro-
cess; actual occupancy is required to optimally control CO2
levels. While temperature and CO2 sensors may provide bet-
ter indirect measures of actual occupancy, the physical phe-
nomena being measured responds to different time scales
and these sensors may be more suitable for understanding
general trends at large time scales. A faster new distributed
sensor network may be needed to respond quickly to ever
changing occupancy. Therefore, conditioning of the room
must begin prior to when the room is actually utilized. Thus,
having the capability to predict user movement or room us-
age patterns prove to be helpful for demand-control venti-
lation; they may also provide enough information for even
substantial local-scale controls. Occupancy prediction can
be achieved by modeling long traces of occupancy data cap-
tured by a sensing system [6], helping modify L-HVAC con-
trol strategies as building usage patterns change with time.

In this paper, we describe the experiments conducted with
SCOPES [4], a wireless camera sensor network for gather-
ing traces of human mobility patterns in buildings. With this
data and knowledge of the building floorplan, we created two
prediction models for describing occupancy and movement
behavior. The first model comprises of fitting a Multivariate
Gaussian distribution to the sensed data and using it to pre-
dict mobility patterns for the environment in which the data
was collected. The second model is an Agent Based Model
(ABM) that can be used for simulating mobility patterns for
developing HVAC control strategies for buildings that lack
an occupancy sensing infrastructure. We integrate the sim-



ulation information to compute energy saving for a building
where we can adjust L-HVAC controls based on occupancy
estimates from a sensor network.

The paper is organized as follows: Section 2 describes the
wireless camera sensor network used for occupancy estima-
tion. Section 3 describes how occupancy data is used to de-
velop models for user mobility prediction and energy saving
estimation and Section 4 compares the performance of these
models. Section 5 discusses the L-HVAC control strategies
and energy savings. Section 6 summarizes our paper and
discusses future work.

2 Occupancy Sensing
2.1 Hardware and Software Infrastructure
We deployed the SCOPES system [4] comprising of 16 sen-
sor nodes on the ceiling of the corridors in the University of
California - Merced Science and Engineering building. The
nodes were deployed in groups of three at transition points
of the floorplan. Each sensor node is comprised of a Cy-
clops camera interfaced with a Moteiv Tmote Sky module
via an intermediate adapter board. The Cyclops is a very
low power camera with an on-board 4MHz ATmega128L
micro-controller (MCU) and 512KB of external SRAM. Due
to the limitation of the total addressable memory, the exter-
nal SRAM is divided into eight, 64KB memory banks. The
Cyclops captures 10 64x64 pixel grayscale images per bank
(i.e., 80 total). In each group, multiple nodes sense the same
area with coordination such that there is minimal overlap be-
tween the image capture periods of the cameras. Whenever
a person crosses any one of these transition points, the cam-
eras capture and process the image data and, thus indicating
whether the transition was recorded or not.

Due to the severe limitations on the available computa-
tional power, we execute lightweight processing algorithms
on the Cyclops. The object detection algorithm running on
the Cyclops determines the presence of an object in the im-
age foreground, if any, and updates the background. This is
done using a modified background subtraction algorithm that
labels the pixels in the captured images as object, shadow or
background depending upon a preset threshold. Next, we
use a connected components algorithm to merge all pixels
labelled as object into a blob. For each blob, information re-
garding the centroid (x and y coordinates) and the number of
pixels is recorded. We track the movement of the blob across
images based on displacement with respect to the previous
image. After processing all the images in the current bank,
an array of data structures containing information on a max-
imum of four objects per bank is transferred to the Tmote
using serial communication. The Tmote routes the informa-
tion to the base station using multihop communication. Both
the Cyclops and the Tmote run the TinyOS operating system.

2.2 System Evaluation and Data Verification
We collected data using the SCOPES system for a period
of 24 hours. This was done to evaluate the performance of
the system with respect to the ground truth. Overall, the
SCOPES system detected 80% of all recorded transitions, as
compared to the ground truth, over a period of 24 hours. The
system has a false positive rate of 25%, which was higher
than the one encountered in the 2-hour experiments (18.5%)

conducted in [4]. The false positive rate refers to the ra-
tio of number of transitions detected by SCOPES when the
ground truth shows none to the total number of transitions
detected by SCOPES. False positives result mainly, due to
the fixed thresholds in the background subtraction algorithms
and camera hardware calibration.

For collecting the ground truth to compare the perfor-
mance of SCOPES, we installed three Philips SPC-900NC
web cameras to record the movement of people. The cam-
era captured approximately three images every two seconds.
This frequency is high enough to record transitions across
areas of interest to the accuracy of seconds. We collected
data from the ground truth system for the entire 24 hours
that the SCOPES system was operated and then for a further
24 hours. The ground truth data was processed using Perl-
magick which annotates images with people in them. We
manually corrected the Perlmagick output for the false posi-
tives and false negatives in the processed ground truth. Our
goal was to use the SCOPES dataset to characterize the sen-
sor error and the ground truth data for creating models of
user mobility patterns.

From the ground truth data, we defined transition points
in the floorplan (refer Figure 1). The time, direction, and
number of people transitioning were recorded for each tran-
sition. The sign of the transition is used to indicate direction
of travel. The transitions points are strategically placedat en-
trances/exits to capture the occupancy changes of each area.

(a) Occupancy Areas

(b) Sample Camera Image

Figure 1. The red and green lines indicate the locations
of the transition boundaries. The arrows show the sign
associated with each transition direction. The gray areas
indicate the area occupancies that can be derived from
the transition data.



3 Occupancy Models
Understanding the dynamics of occupancy patterns is cen-
tral to the approach of occupancy-based building energy
management. Multi-scale spatiotemporal dynamics of oc-
cupancy with high variability makes this a challenging task.
In this paper, we developed two dynamic models of occu-
pancy distributions, the Multivariate Gaussian Model and
the Agent-Based simulation Model (ABM). These models
enable simulations at an individual level and are useful for
off-line studies, such as: 1) learning occupancy patterns
from sensor data and generating variations of those patterns,
which can be used for evaluating different energy manage-
ment options, 2) optimal sensor placement for accurate esti-
mation of occupant traffic, and 3) learning statistical patterns
in occupant traffic in one building and applying it to other
buildings of similar types to simulate occupancy dynamics.
3.1 Multivariate Gaussian Model
In this section we discuss a simple occupancy model that
utilizes multiple gaussian fits over the data. In particular,
we focus on constructing a model that can simulate the oc-
cupancy for two specific areas that are represented by the
ground truth data. Given its simplicity, this model serves as
a coarse baseline model for other occupancy simulation and
prediction approaches.
3.1.1 Training
On an intuitive level, over the course of a day we expect oc-
cupancy to increase in the morning when people arrive for
work, decrease when people go to lunch, increase when peo-
ple return from lunch, and then eventually drop to zero when
people leave for the day. These are the general increases
and decreases of occupancy we can expect based on our real
world experiences. The strategy behind this approach is to
model each of the increases and decreases separately.

However, as the occupancy data suggests in Figure 2,
there may be other regular phenomenon affecting occupancy
other than those based on intuition. In order to ensure that
the majority of occupancy dynamics is captured, the data is
partitioned into hourly blocks. LetOh denote all occupancies
that occur per second during hourh where 1≤ h≤ 24,
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HB, HM, L, andO f refers to the Hallwayback, Hallwaymiddle,
Lab, and Office areas occupancies respectively (refer Fig-
ure 1). n represents the number of observations in hourh.
Let µHB, µHM, µL, andµO f denote the average occupancy for
Hallwayback, Hallwaymiddle, Lab, and Office areas occupan-
cies respectively. These means will change based onh.

We calculate a vector of meansµh = {µHB,µHM,µL,µO f}
and covariance matrixΣh from Oh. Using µh and Σh, we
define a probability density function (PDF)f :
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The PDF f allows us to describe the probability of an oc-
cupancy occuring for a specific hour datasetOh. Using this
function we can randomly draw occupancy vectors from the

distribution. For hours 8:00:00 to 22:00:00, we usef to
describe the distribution of the occupancies. These are the
hours that have the most occupancy dynamics. For hours
23:00:00 to 7:00:00, we assume that the occupancy for all
areas is zero. This assumption is based on our observation of
the 48 hours ground truth and intuition.

3.1.2 Simulation Generation
However, randomly drawing occupancies fromXh does not
represent certain constraints. For example, suppose we ran-
domly sample from the distribution and obtain{0 0 0 0} for
time t (all areas are empty) and{0 0 0 1} for t +1 (one per-
son in the office). This situation is impossible since a person
must first pass through the hallway to reach the office. Thus,
if we sample randomly from the fit distributions without re-
strictions, the simulation will produce impossible transitions.

In order to solve this problem, rather than sample from the
entire distribution, we instead randomly sample from a sub-
set of occupancies that are actually possible given the current
occupancy state. The following algorithm is used to generate
simulated occupancies:

CurrentOcc←Specify starting occupancies
p(Oh,occ)←Probability of an occupancyoccgivenOh
for timestep= 1 to Simulation Durationdo

CurrentHr← Current hour givent and start time
if 8≤CurrentHr≤ 22 then

ValidOcc←All valid occupancies givenCurrentOcc
P← p(OCurrentHr,ValidOcc)
PNorm← P

∑P (P normalized)
CurrentOcc← Random occupancy fromValidOcc
usingPNorm

else
CurrentOcc←All rooms empty

end if
end for

3.1.3 Assumptions
There are several assumptions that are made to increase effi-
ciency and to account for physical restrictions. When deter-
mining valid occupancies, the list of possible occupanciesis
not exhaustive. We assume that a maximum of two people
can move through the lab, office, and elevator doorways. For
slightly larger hallway entrances, we assume a maximum of
three people can pass over a transition boundary. These as-
sumptions are based on the maximum transitions observed
in the ground truth data. The last assumption made is that
people are not moving through multiple doorways concur-
rently. This is done to reduce the total number of possible
occupancies that need to be examined and the time required
to run simulations. The data shows that transitions rarely oc-
cur concurrently. Out of the 48 hours of ground truth data,
only 4.68% of transitions occurred concurrently.

3.2 Agent Based Model
An agent-based model of part of the 2nd floor of the Science
and Engineering building at UC Merced has been developed
to simulate people dynamics. The simulation model we have
employed is analogous to the cellular automata models [7].
The model takes into account the building geometry and sim-
ulates each individual’s movement, and is able to provide
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Figure 2. 48 hour ground truth occupancy data.

quantitative output such as occupancy and congestion lev-
els at any location and at any time period. In order to sim-
ulate each individual’s movement, agent decisions must be
modeled on several levels, such as itinerary, path choice,and
walking behavior [1]. Itinerary decision determines the time
of arrival and entrance, the number of stops, and the loca-
tion and dwell time of each stop, for each individual. Path
choice is the decision on which path to follow,given the indi-
vidual’s destination and a set of alternatives. Walking behav-
ior is determined by factors such as average speed, average
space taken by each individual, and conflict resolution rules
at times when conflicts between agents arise.

In our current implementation, the spatial grid size has
been set to be 2 by 2 feet cell (with discrete time step of 0.5
sec) and an agent follows a shortest path. Occupant itinerary
has been calibrated using arrival time and entrance, number
of stops, and location and dwell time of each stop from traf-
fic data collected from web cameras located along the corri-
dors of the S&E building. Preliminary results indicate that
the calibrated model-based predictions are reasonable when
compared to raw measurements. The calibration procedure
is described as follows.

In the first step, individual camera data were combined
based on camera location, direction and sensor event time
stamps, converting raw measurements into meaningful tra-
jectories. Each trajectory has a time stamp indicating its ini-
tiating time, and zone identification numbers indicating its
start and end location in the building. For example, if the
camera data indicates that boundary 1 has an event at time t,
boundary 2 has an event at time t+∆, and∆ is within the typ-
ical time range used to go from boundary 1 to boundary 2,
then a trajectory can be formed by combining the two events
indicating at time t, a person moves from zone i to zone j
through boundary 1 and 2. In the second step, a heuristic
procedure was followed to assign trajectories to agents, from
which agent itineraries were formed.

4 Model Comparison
In this section, we compare the performance of the MVGM
and ABM, and examine the merits of each approach. The
main statistics used for comparison are root mean squared
error (RMSE) and normalized root mean squared error
(NRMSE). The RMSE is the average difference in occu-

pancy for a given simulation.

4.1 Initial Exploration
As expected, regular patterns in the occupancy data are ob-
servable (refer Figure 2). The office plot shows the occu-
pancy steadily increasing until just after noon. At around
12:00:00, people in the office leave for lunch and then re-
turn shortly after. By 18:00:00, the entire office is empty.
One noticeable discrepancy can be observed when compar-
ing peak office occupancy of each day. The first day shows
a maximum office occupancy of 18 whereas the second day
shows a maximum occupancy of only 13. This is due to
a large lunch meeting of six people on the first day. Typi-
cally the office staff is around 12 people. The lab plot shows
a slightly different patterns but still is consistent with intu-
ition. Students arrive in the morning, go to lunch, and then
stay until late evening. Unlike the office staff, many students
arrive mid-afternoon and leave much later.

4.2 Multivariate Gaussian Model Results
The MVGM was trained using the first 24 hours of data from
the ground truth. The second 24 hours of ground truth was
used as a testing set. For each model, 20 simulations were
generated. Figures 3 shows a sample simulation generated
by this model. From the plots, we can see that the simulation
seems to capture the major events that occur during the day
such as arriving for work and going to lunch. One notice-
able difference is that simulations contain a fair amount of
noise. This is most likely caused by the random sampling.
Though each occupancy sampled is possible under the sam-
pling rules, the rules do not prevent certain types of unlikely
events. For example, it is possible under our current scheme
for a person to enter the hallway through a particular door
and then with fairly high probability immediately exit out
of the same door. This “pacing” behavior seems to be the
cause of this noise. This could potentially be corrected with
additional sampling rules. On average, simulated lab occu-
pancy differs from the test set occupancy by 3.462 people
(RMSE) which is an average error of 28.8% (NRMSE). The
simulated office occupancy shows an average difference of
7.453 (NRMSE of 46.5%). If we examine the combined to-
tal occupancy of both rooms, we find that the simulated total
occupancy differs from the training set by 10.214 (NRMSE
of 42.6%).

4.3 Agent Model Results
The ABM was trained using the same 24 hour data set as the
MVGM. To generate occupancy profile for lab and office, a
day is divided into six time periods taking into account dif-
ferent behavior during different time of the day, e.g., early
morning, lunch time and late afternoon. For each time pe-
riod, empirical distributions of arrival time and durationin
the lab/office were collected from the agent-based model.
Based on the distributions, 20 simulation runs of the ABM
were generated representing a variety of possible occupancy
patterns of the lab and office. Figure 3 shows a sample sim-
ulation produced by the ABM. Like the MVGM, the ABM
also seems to generate plausible simulations that capture the
major shifts in occupancy. The simulated lab occupancy dif-
fers from the test set occupancy by 3.774 people (RMSE)



0 6 12 18 24
0

10

20

Lab Occupancy

Time (Hour)

O
cc

up
an

cy

 

 

Ground Truth

0 6 12 18 24
0

10

20

Office Occupancy

Time (Hour)

O
cc

up
an

cy

0 6 12 18 24
0

20

Time (Hour)

O
cc

up
an

cy

 

 

MVGM Sim

0 6 12 18 24
0

20

Time (Hour)

O
cc

up
an

cy

0 6 12 18 24
0

20

Time (Hour)

O
cc

up
an

cy

 

 

ABM Sim

0 6 12 18 24
0

20

Time (Hour)

O
cc

up
an

cy

(a)

0 5 10 15 20
3.4

3.45
3.5

Lab Occupancy: Root Mean Squared Error

Simulation

R
M

S
E

 

 
RMSE
Avg RMSE
95% CI

0 5 10 15 20

7.4

7.6

Office Occupancy: Root Mean Squared Error

Simulation

R
M

S
E

 

 
RMSE
Avg RMSE
95% CI

0 5 10 15 20

10.2

10.4
Total Occupancy: Root Mean Squared Error

Simulation

R
M

S
E

 

 
RMSE
Avg RMSE
95% CI

(b)

Figure 3. (a) Comparison of ground truth traces for lab and office areas with MVGM and ABM simulation traces. (b)
Variation in RMSE along with 95% confidence interval for MVGM si mulation traces.

MVGM ABM
RMSE NRMSE RMSE NRMSE

Lab 3.462 0.2885 3.774 0.3145
Office 7.453 0.4658 7.577 0.4736
Total 10.214 0.4256 10.395 0.4331

Table 1. This table shows the average RMSE and
NRMSE for simulations generated by the MVGM and
the ABM.

RMSE NRMSE
Lab 3.370 19.4%

Office 3.107 28.1%
Total 5.688 23.7%

Table 2. This table shows the RMSE and NRMSE when
comparing the 24 hour testing and training datasets.

which is an average error of 31.5% (NRMSE). The simu-
lated office occupancy shows an average difference of 7.577
(NRMSE of 47.4%). The simulated total occupancy differs
from the testing set by 10.395 (NRMSE of 43.3%).

4.4 Comparison of Models
With respect to RMSE and NRMSE, both models to have
similar performance. Though both models have a large
amount of error, this error is actually reflecting the amountof
occupancy variation that is possible between different days.
If we compare the 24 hours testing set to the 24 hours train-
ing set, we find that the NRMSE for the lab, office and total
occupancies are 28.1%, 19.4%, and 23.4% respectively (re-
fer Table 2). This shows that a significant amount of occu-
pancy variation can be occur between days. One noticable
difference between the simulations is the absence of noise in
the ABM simulations. Since the ABM requires agents to fol-
low a predefined path, this prevents people pacing between
areas. In this respect, the ABM seems to capture the subtle
occupancy variablility better than MVGM.

While both models produce plausible simulations, each
has its advantages and disadvantages. The ABM can be ap-

plied to other structures where an occupancy sensing infras-
tructure does not exist by training the ABM with data from
another building with similar dynamics. This is not possible
with the MVGM. The ABM is useful for building designers
looking to maximize energy savings. The MVGM is more
useful for real time prediction. Unlike the ABM which simu-
lates occupancies offline, the MVGM can predict occupancy
given the time of day and current occupancy by calculating
the posterior probability given the current occupancy on all
or part of the building.

The results that can drawn are limited by the data avail-
able. Though it would be preferable to gather data beyond 48
hours to capture weekly, monthly, and quarterly trends, the
labor required to process ground truth data makes gathering
additional data impractical. Ideally, less accurate data can be
automatically gathered by SCOPES and used for model de-
velopment. However, currently the SCOPES cameras cannot
be placed in several key transition boundaries in the hallway
because of physical restrictions and University regulations.
We are working toward overcoming these restrictions with
the eventual goal of collecting longer traces of data from
SCOPES to model short and long term trends.

5 Optimal L-HVAC Strategies
Traditionally, lighting, temperature, and ventilation (outside
air - OA) control are based on schedules that rely on room us-
age assumptions. However, this assumption frequently over-
estimates the occupancy of spaces. On the other hand, if
occupancy information is known, one could control lights,
temperature, and ventilation levels to the appropriate level
required, and set them back to minimum or off conditions
when no occupancy is detected, resulting in energy savings.
In this paper we illustrate the impact of ventilation control
strategy on energy savings. Ventilation air is introduced into
the building to avoid poor indoor air quality and is a func-
tion of thenumber of peoplein the building and the square
footage; simply knowing if a room is occupied is not suffi-
cient for venting. In absence of real-time occupancy infor-
mation, OA amount is fixed based on maximum design occu-



pancy assumption. Excess outdoor air has significant penalty
on heating energy and depending on the outside temperature,
even cooling energy. Thus varying the amount of air during
nonfree cooling times to the minimum required to maintain
acceptable indoor air quality based on actual real time occu-
pancy has potential for saving energy.

An existing eQuest model [3] of Classroom and Office
building (COB) on the UC Merced campus, developed dur-
ing the building design stage, was used to understand the
energy savings potential of using occupancy estimation for
ventilation control. EQuest is an hourly whole building en-
ergy simulation tool used widely by the building community.
It uses information on building configuration, schedules of
building usage including people, lighting, plug loads, HVAC
system configuration, expected cooling, heating and ventila-
tion levels, and weather conditions to calculate the building
energy consumption.

Two ventilation control strategies were simulated: base
and new. In the base case, the OA quantity is based on max-
imum design occupancy, available during the occupied time
(8 am 10 pm). This quantity is fixed during the occupied
time, irrespective of occupancy. The new ventilation strat-
egy has OA quantities in all zones following the occupancy
in the respective zones. All the strategies simulated con-
sider the applicable codes. The daily actual occupancy lev-
els over time for various HVAC zones in COB is estimated
from available information on schedules for classrooms and
an ABM for people movement in offices.
5.1 Occupancy schedule for part of COB
The S&E building has multitude of HVAC systems deployed
for a variety of purposes including office spaces as well as
clean room or laboratories. Due to the simplicity of the
HVAC configuration in the COB building, and its primary
usage for offices and classrooms with variable occupancies,
the COB building was chosen for the energy savings estima-
tion. Also, since energy models had previously been devel-
oped for the COB building, the goal was to take advantage of
these models and examine potential energy savings for this
building using simulated occupancy schdedules. Currentlyit
is not possible to measure occupancies directly in the COB
building. However, since the S&E building has similar traf-
fic patterns to the COB, an ABM trained using data from
the S&E building was developed to construct occupancies
schedules for some portions of the COB building.

The occupancy modeling work for the UC Merced COB
has been focused on the office section of second floor. Sta-
tistical distributions of parameters which define occupant
itinerary; arrival time, dwell time, and number of stops, are
extracted from the ABM from the S&E building, which is ex-
pected to have similar traffic. The information regarding dif-
ferent types of occupants that use the building (and their rel-
ative proportions) and occupancy level for whole office sec-
tion, is derived from different types of rooms in the section
and maximum occupancy expected in each room. Finally, by
Monte Carlo sampling of the occupant itinerary parameters
and averaging over different realizations of traffic patterns
obtained from simulating the model, occupancy profile over
the course of the day for each room is generated. This helps
us assess the impact of using the time resolved occupancy

distribution on energy savings.
5.2 Potential Energy Savings
Using simulation data from the COB ABM, we find that 5%
of HVAC energy savings is possible compared to the current
outside ventilation air control strategy and about 14% HVAC
energy savings is possible when compared with base-case
outside air control strategy. Sensitivity calculations ofen-
ergy savings to occupancy estimation errors and sensor bias
were conducted. Results show that 20% occupancy estima-
tion errors have negligible impact (0.28%) on HVAC energy
savings estimation of 14%. A sensor bias of 20% results in
3% change in energy savings estimation.

6 Conclusions
In this work, we present the first steps in understanding dy-
namic occupancy levels and patterns in buildings, means
by which they can be estimated, and the energy efficiency
gains possible by utilizing actual facility usage information
for building controls. As proof of concept, we deployed an
16-node wireless camera sensor network in a multi-function
building to determine the occupancy resolution one can con-
ceive of obtaining in a typical building. These results in turn
were used to demonstrate an example of an occupancy-based
energy control. The results suggest that, in many buildings
and for many building uses, we will find that knowing the oc-
cupancy and usage patterns will result in significantly higher
energy savings compared to strategies assuming fixed occu-
pancy and usage patterns. Our future research directions in-
volve doing online L-HVAC control using only a wireless
camera sensor network to provide occupancy estimates for
longer durations (days, months).
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