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Abstract
802.15.4 links experience different level of dynamics at

short and long time scales. This makes the design of a suit-
able model that combines the different dynamics at different
timescales a non-trivial problem. In this paper, we proposea
novel multilevel approach involving Hidden Markov Models
(HMMs) and Mixtures of Multivariate Bernoullis (MMBs)
for modeling the long and short time scale behavior of wire-
less links using experimental data traces collected from mul-
tiple 802.15.4 testbeds. We characterize the synthetic traces
generated from the model of the wireless link in terms of sta-
tistical characteristics as compared to an empirical tracewith
similar PRR characteristics, such as the mean and variance
of the packet reception rates from the data traces, compar-
ison of distributions of run lengths and conditional packet
delivery functions of successive packet receptions (1’s) and
losses (0’s). We modified TOSSIM to utilize data traces cre-
ated using our modeling approach and compare them against
the existing radio model in TOSSIM, which uses the Closest-
fit Pattern Matching model for modeling variations in noise
which affect the link quality. The results show that our pro-
posed modeling approach is able to mimic the behavior of
the data traces quite closely, with difference in packet recep-
tion rates of the empirical and simulated traces of less than
2.5% on average and 9% in the worst case. Moreover, the
simulated links from our proposed approach were able to ac-
count for long runs of 1’s and 0’s as observed in empirical
data traces.
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1 Introduction
The common denominator in all wireless sensor networks

(WSNs), regardless of their underlying application, is the
use of the radio to communicate information extracted from
the sensed environment and, more importantly, to coordinate
with other nodes. Consequently, radio communication and
intelligent usage of the radio is a critical component of wire-
less distributed system in general and WSNs in particular.
Due to the low power nature of WSNs, the radio used for
communication is especially susceptible to changes in the
quality of the wireless medium resulting in packet losses
which can be attributed to limited transmission power levels
as well as multipath effects resulting from lack of frequency
diversity. Experiments [28] conducted with these low-power
radio equipped sensor nodes have shown, using empirical
measurements, that there exists a “gray area” within the com-
munication range of sensor radios where the packet recep-
tion varies widely. Data collected using SCALE [4], led to
the following conclusions: (i) no clear correlation between
packet delivery and distance in an area of more than 50% of
the communication range, (ii) temporal variations of packet
delivery are correlated with mean reception rate of each link,
and (iii) percentage of asymmetric links in a sensor network
varies from 5% to 30%. These studies [28, 4, 5, 6, 25] help
confirm that low power wireless communication is unpre-
dictable, is sensitive to changes in the environment and is
known to significantly change over different time scales.

In systems research, a well-designed simulator provides
users with the ability to test new ideas in an inexpensive
manner. The simulator models the key elements of a given
system, for example: hardware such as the CPU, network
interfaces, sensors, etc. and software such as the operating
system. This allows the user to focus his attention on the de-
sign, testing and analysis of algorithms in a controlled and
repeatable environment. Recent studies [21, 15] have indi-
cated the presence of a wide chasm between the real world
radio channel behavior and existing radio channel models in



wireless simulators. This leads to significant differencesin
performance of a system in simulation as compared to a real
world deployment. Thus, improving wireless simulators by
incorporating accurate and robust radio channel models will
reduce the gap between simulation and real-world perfor-
mance. To reach this goal, we believe it is required to collect
data traces of packet reception information over long periods
of time at fine granularity. This data would be the seed for
creating radio channel models that would help simulate more
realistic packet losses, thus helping application designers in-
crease the robustness of their applications by accounting in
simulation for losses in the wireless medium.

In this paper, we propose a novel multilevel approach in-
volving Hidden Markov Models (HMMs) and Mixtures of
Multivariate Bernoullis (MMBs) for modeling the long and
short time scale behavior of links in wireless sensor net-
works, that is, the binary sequence or trace of packet re-
ceptions (1s) and losses (0s) in the link. In this approach, a
HMM models the long-term evolution of the trace (level 1) as
transitions among a set of unobserved, level-1 states. These
states typically correspond to a roughly constant packet re-
ception rate (as determined by the data) and might corre-
spond to different regimes of the link. Within each level-1
state, the short-term evolution of the trace (level 2) is mod-
eled by either another HMM or by a MMB. This captures the
faster, but not random, variations of the sequence of packet
receptions and losses. We characterize the synthetic traces
generated from the model in terms of several statistical mea-
sures: moments (mean and variance) of the distribution of
packet reception traces, run length distributions of packet re-
ceptions and of packet losses, and conditional packet deliv-
ery functions (CPDFs). To compare run length and CPDF
distributions, we designed a new metric called the Nearest-
Neighbor Distance. This metric aims to solve the problem of
comparing distributions with unequal supports. In addition,
a full implementation of the M&M model for the TOSSIM
simulator is provided.

The rest of the paper is organized as follows: A review of
related work for modeling the behavior of wireless links is
provided in Section 2. In Section 3, we identify issues that
need to be addressed to resolve the deficiencies in link mod-
els for WSN simulators and propose a new Markov-based
modeling approach for addressing these issues. Section 4
contrasts the modeling of links in existing WSN simulators
against our proposed approach. Finally, in Section 5, we dis-
cuss issues related to our modeling approach and in Section 6
summarize the results and discuss future work.

2 Background and Related Work
Models for characterizing the behavior of wireless links

have been a widely studied area in networking literature [22].
These studies can be classified into radio propagation mod-
els and packet loss models. Radio propagation models pre-
dict the average received signal strength and its variability
at a given distance from the transmitter. In contrast, packet
loss models try to discover the underlying bursty packet loss
distribution. Errors in packet reception can be attributedto
causes such as interference in the channel and fading ef-
fects which lead to irrecoverable bit errors. The Gilbert

model [10] is a probabilistic model for simulating burst
noise in data transmission channels. In this model, a Hid-
den Markov model with two states is used to generate noise
bursts, the first state has zero probability of encounteringan
error whereas the other state has a certain fixed non-zero
probability for transmission errors. Analysis of traces [20]
for the AT&T Wavelan system concluded that loss behavior
could not be accounted by the 2-state Markov model. They
proposed a methodology to model the error-free and error
traces using exponential and Pareto distributions to model
segments of the trace. Traces modeled [26] from measure-
ments of Internet packet loss compared between a Bernoulli
model, 2-state Markov chain model andkth order Markov
chains to check for the accuracy of the loss estimation over
38 stationary trace segments. They concluded that all these
models are inadequate as they could not accurately model
losses in their dataset.

Figure 1. SE testbed: 25 groups of three nodes each sep-
arated by a distance of 40cm. Nodes are placed at fixed
locations along the corridor ceiling of the building.

Markov-Based Trace Analysis (MTA) [13] and Multiple
MTA [14] approaches propose modeling channel errors by
decomposing a trace with non-stationary properties into a
set of piecewise stationary traces consisting of “lossy” and
“error free” states. Lossy states exhibit stationarity, where
a sequence of lossy states can be modeled by a traditional
discrete time Markov chain (DTMC). In [24], HMMs were
proposed for modeling packet reception traces and choosing
a model based on the likelihood criterion. Markov-based sto-
chastic chains were proposed [12] to model 802.11b channel
behavior for bit errors and packet losses. The study com-
pared the performance of high order Markov chains, 2-state
Hidden Markov Models and hierarchical Markov Models
and concluded that Markov chains of order 9 (i.e., 29 states)
are required for accurate models for the bit error process.
These studies helped reinforce the notion that for any mod-
eling approach to simulate behavior of wireless links, the
model needs to account for the long and short term varia-
tions in the link quality. Also, the model should be easy to
train and show close correlation between the input and the
simulated data traces.



Testbed Program Num. Expts. Duration Num. Packets/Expt. CC2420 Tx power levels
SE RssiDemo 9 1 hour 230400 1-31
SE RssiDemo 1 6 hours 1382400 7
SE RssiDemo 3 12 hours 2764800 8,9,11
SE RssiSample 3 30 minutes 196608 -

MoteLab RssiDemo 18 30 minutes 115200 31
MoteLab RssiSample 3 30 minutes 196608 -

Table 1. Summary of experiments conducted on the MoteLab and SE testbeds (Note: 802.15.4 channel 26 is used in all
experiments).
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Figure 2. Variation of the average data throughput per
hour for all good and intermediate links in the network.

2.1 TOSSIM
TOSSIM [17] is a discrete event simulator for sensor net-

works running on the TinyOS operating system. It allows
users to write TinyOS code in a simulation environment that
is scalable and bridges the gap between algorithm testing and
application development. TOSSIM simulates behavior of the
CPUs, radios and sensors in different sensor nodes, network-
ing stacks and other OS primitives.

TOSSIM supports several radio models, namely the Sim-
ple Propagation model, the Link Layer model [29] and the
CPM model [16]. In the Simple Propagation model, ev-
ery node can receive packets transmitted by any other node.
The Link Layer model specifies the behavior of the wire-
less link depending on the radio and the channel charac-
teristics for static and low-dynamic environments. CPM is
based on a statistical model created from noise reading traces
collected from the deployment environment. It computes
the probability distribution ofnt given the noise readings
(nt−k,nt−k+1, ...nt−1), wherek is the duration of noise his-
tory considered by the model. Ak = 0 would make each
noise value independent, whilek equal to the length of the
trace would provide an exact replay of the noise trace. In a
recent paper [23], two approaches (Expected Value PMF and
Average Signal Power Value) were proposed to estimate the
signal power of missing packets in a packet reception trace,
and, using this data the CPM algorithm models the varia-
tions in packet signal strength. These existing models require
the modeling of two separate physical layer measurements,
namely, RSSI and noise/interference values to create a rep-

resentative model of a real environment.
In contrast, in this paper, we propose the modeling of cor-

relations between successive packet receptions and failures
from a given packet reception trace as the packet reception
traces are a direct indicator of the link quality.

3 Wireless Link Modeling
3.1 Collection of Packet Reception Traces

In order to create an accurate packet loss model, we re-
quired a comprehensive database of packet reception traces
of links having different reception rates. For this task, we
collected data from a 75 node MoteIV Tmote Sky testbed
deployed along the ceiling of the Science and Engineer-
ing Building (SE testbed). Each mote is comprised of an
ultra low power Texas Instruments MSP430 F1611 micro-
controller featuring 10KB of RAM, 48KB of flash and a
802.15.4 compliant Chipcon CC2420 radio (channel 26) for
wireless communication. The node locations are fixed for the
duration of our experiments (refer Figure 1 for details). All
the motes in a group are connected to a Linksys NSLU2 net-
work storage device via an USB hub. The Linksys NSLU2
device is used to bridge serial communication between the
motes and a central server over the local network.

We performed a number of experiments to collect packet
reception traces from a diverse set of links (see Table 1). In
each experiment, we have one fixed sender and multiple re-
ceivers. The sender sends 64 packets per second with an
inter-packet interval of 16ms on channel 26 for durations of
1, 6 and 12 hours. The receivers record the sequence num-
ber, received signal strength (RSSI) and link quality indica-
tor (LQI) values of each received packet. We also collected
the same data from the Motelab testbed [27] but the duration
of each experiment was limited to 30 minutes due to storage
concerns regarding the large amount of data generated in ev-
ery run. After each experiment, we created records or traces
of packet reception for each of the receiver nodes. In addi-
tion, we also gathered noise data (channel 26) for all nodes
using theRssiSampleprogram on both the testbeds. The
length of the noise traces is equivalent to themeyer−heavy
trace collected in [16]. The noise traces are meant to be uti-
lized for a faithful comparison between the TOSSIM simu-
lation model and our proposed approach.

3.2 Exploratory Data Analysis
In this section, we highlight issues that need to be ad-

dressed when modeling 802.15.4 wireless links. We term
links having packet reception rate (PRR)< 10% as bad or
poor links, links having PRR between 10% and 90% as in-
termediate links and links having PRR greater than 90% as
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(a) Link1-Hour1, PRR=42%
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(b) Link1-Hour2, PRR=65%
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(c) Link1-Hour3, PRR=19%
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(d) Link1-Hour1, PRR=42%
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(e) Link1-Hour2, PRR=65%
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(f) Link1-Hour3, PRR=19%

Figure 3. Variation in PRR and RSSI by hour for a typical inter mediate quality link. Figure shows that PRR and RSSI
values are stable for short periods of time.

Exp. CC2420 Good Bad Interm Inactive
# Tx. Lvl.
24 11 20(48%) 8(19%) 7(17%) 7(16%)
26 10 19(45%) 7(17%) 3(7%) 13(31%)
28 8 19(45%) 10(24%) 3(7%) 10(23%)

Table 2. Summary of variation of link quality in a net-
work as a function of sender radio transmission power.

good links. Links having PRR= 0% are termed as inactive
links.

Prior studies have shown that 802.15.4 links can vary sig-
nificantly over time [4, 6, 18]. In Figure 2, the average net-
work throughput per hour averaged over all the links having
PRR> 10% in the network is shown as a function of time of
day for the 12 hour experiments. The figure clearly shows
that the average network throughput is not constant, but fluc-
tuates with time. This is a clear indication of variation of
PRR across nodes in the network. The radio transmission
power levels in experiments 24, 26 and 28, correspond to
values 11, 10 and 8 in the CC2420 registers. This would lead
one to think that, the throughput should be highest for experi-
ment 24, followed by level 26 and 28, respectively. However,
from the data, we see that the throughput for experiment 24
is less than that of the others. This can be explained by the
higher total number of intermediate links (see Table 2) com-
pared to the other experiments. An interesting artifact of the
environment can be see in Figure 2, which shows a fairly

consistent decrease in throughput from midnight to midday
in all three experiments. From our experimental data, we
observed that good and bad links are relatively stable over
time whereas intermediate links show significant variationin
link quality over time. This is consistent with previous find-
ings reported in [4, 6]. In general, in simulation, it is easy
to model good links as they do not show significant varia-
tion with time [19, 23]. On the other hand, there is a sig-
nificant difference between the models of intermediate links
in simulation and the real-world. If the accuracy of simula-
tion models of these intermediate links were improved, then
it is possible that WSN application simulations could show
the potential benefits of using these intermediate links when
their quality is high enough for transporting data instead of
permanently ignoring or blacklisting them. In addition, it
would help application designers to test performance of al-
gorithms for the common case, and the corner cases that are
one of the causes of protocol failure.

To emphasize this point, we plot the variation in PRR and
RSSI of a representative intermediate link. For this link (see
Figure 3), the PRR is plotted as a function of time, where
each PRR value is calculated for a two second interval (i.e.,
for 128 consecutive packets at a time). Figure 3 also shows
the corresponding variation in RSSI values of the received
packets. From Figure 3, we see that the average PRR of link
1 is 42%, 65% and 19% for hours 1, 2 and 3, respectively
and the corresponding average RSSI values are -91.85 dBm,
-91.8 dBm and -91.67 dBm, respectively. In each hour, we
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Figure 4. Graphical model of a HMM which emits binary
strings xt of length 8. In the M&M model, this is the L1–
HMM, and p(xt |qt) is itself a HMM or a MMB.

see that the PRR and RSSI values fluctuates widely, cycling
between good, intermediate and bad states. In each state, the
link is relatively stable for a given period of time before a sig-
nificant change in link quality. A closer look at the sequence
of received packets within few tens of seconds reveals that
packet receptions and losses are not independent i.e., inter-
mediate links show significant bursty behavior. This shows
that links of intermediate quality manifest highly dynamic
behavior over time at different time scales, thus highlighting
the non-trivial nature of the modeling problem for such links.
3.3 Our Modeling Approach

We consider our observed data as binary sequences where
1 indicates successful packet reception and 0 indicates lost
or corrupted packets. (We will also consider a sequence of
continuous values, namely the reception rates in[0,1] indi-
cating the average over a binary window.) The fundamen-
tal motivation for our modeling approach is that observed
traces display structure at different temporal scales. In Fig-
ure 5(a), for example, one can see that over a period of min-
utes the link seems to switch between two states: one with
PRR≈ 0.6 and the other with PRR≈ 0.8. We call this the
long-term dynamics. In a period of seconds, however, while
the PRR may stay roughly constant at 0.6, it is more likely
to observe a bursty sequence0000111111 than a wildly os-
cillating sequence1010101101. We call this theshort-term
dynamics. In order to simulate realistically the behavior of
links, we want a model that is flexible enough to replicate
this multiscale structure, and we want to estimate its param-
eters (which determine its typical PRRs or its local bursti-
ness) from observed traces. We now describe the details of
our model, theMulti-level Markov (M &M) model; appen-
dices A–B give an overview of hidden Markov models and
mixtures of multivariate Bernoulli distributions.
3.4 The Multi-level Markov (M &M) Model

We model a possibly infinite binary sequence (the data
trace) as asequence of binary strings(windows)xt of length
W, as shown in Figure 4. Alevel-1 hidden Markov model
(L1–HMM) with Q1 different statesq = 1, . . . ,Q1 models
transitions between long-term states, and hasQ2

1 tunable
parametersai j (the transition probabilitiesp(q = j|q = i)).
Each long-term stateq has its own distributionp(x|q) of
emitting binaryW-windows, which captures the short-term
behavior of the link in that state—that is, the dynamics of the

Original Simulated PRR Simulated PRR
PRR by L2–HMM by L2–MMB

Mean±StdDev Mean±StdDev
0.31 0.34± 0.004 0.31± 0.010
0.59 0.61± 0.006 0.56± 0.005
0.61 0.62± 0.002 0.62± 0.002
0.62 0.59± 0.004 0.61± 0.006
0.71 0.68± 0.010 0.69± 0.002
0.72 0.70± 0.019 0.71± 0.007

Table 3. Summary Statistics of Links: Comparison be-
tween the original trace and simulated traces from the
M&M model using HMMs and MMB, respectively. Both
the L2 modeling approaches work well for simulating the
behavior of the traces.

variations in consecutive packet reception successes or fail-
ures that has its own parameters (described below). Thus,W
controls the tradeoff of short vs. long term. In this paper, we
studied two types of short-term, or level-2, modelsp(x|q):

• A hidden Markov model (L2–HMM). This has (1) a set
of Q2 short-term states (different from those of the L1–
HMM) and its ownQ2

2 transition probabilities, and (2)
a (univariate) Bernoulli emission distribution with pa-
rameterp. Thus, this is a sequential model: to emit
a W-window we sampleW times from the L2–HMM.
Note that the L2–HMM for long-term statei has its own
parameters, different from those of the L2–HMM for a
different long-term statej.

• A mixture of multivariate Bernoulli distributions (L2–
MMB). This mixture hasM components, and each com-
ponent hasW + 1 parameters: a mixture proportion
and a vectorp = (p1, . . . , pW) of Bernoulli parame-
ters. Thus, this is not a sequential model: to emit a
W-window we pick a component at random (according
to their proportions) and then we sample from itsW-
dimensional Bernoulli theW-window at once.

We report experimental results with both models be-
low. In both models, using a sufficiently large number of
short-term statesQ2 or mixture componentsM allows us
to model arbitrarily complex distributions ofW-dimensional
binary windows; for example, more or less bursty sequences.
Importantly, note that if we modeledp(x|q) as a single
Bernoulli (i.e.,M = 1), then bits within the window would be
independent from each other, leading to unrealistically oscil-
lating behavior. The average PRR of a long-term statei is
the mean of its emission distributionp(x|q = i).

Next, we explain how to simulate a binary trace from our
model (sampling), and how to estimate good model parame-
ters from measured data (learning).

3.4.1 Sampling
In order to generate a trace of lengthL bits from the

model, we sample as follows:

1. Generate a long-term state sequence of lengthL/W us-
ing the transition probabilities of the L1–HMM.

2. For each long-term stateq of this sequence, we sample
a W-window x from its p(x|q) (i.e., the corresponding
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(a) Original PRR=72%
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(b) M&M L2–HMM: PRR = 73%,Q1=6, Q2=2
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(c) M&M L2–MMB: PRR = 76%,Q1=6, M=20
Figure 5. Average PRR over time from (a) experimental 1-hourdata trace, (b) simulated trace using L2–HMM and (c)
simulated trace using L2–MMB, respectively. On the right sidewe see the statistics for each link for the weighted run
lengths (WRLs) and CPDFs. Note: (i) WRL values do exist for eachinteger and are zero if not shown; (ii) CPDF values
do not exist beyond a maximum run length, so CPDF plots are truncated at maximum run length.



L2–HMM or L2–MMB).
The trace is the concatenation of theL/W windows.

3.4.2 Learning
In a machine learning approach, estimating the parame-

ters of a probabilistic model is usually done by maximizing
the log-likelihood of a given data set (one or more observed
traces) over all the model parameters (transition probabili-
ties for all short- and long-term states, mixing proportions,
Bernoulli parameters). For our multilevel HMM this can
be quite complex and time-consuming, so in this paper we
follow a simpler learning algorithm that is slightly subopti-
mal but faster and relatively robust to local optima, by first
estimating the L1–HMM transition probabilities, and then
estimating the L2–HMM transition probabilities or the L2–
MMB parameters. The training process is as follows:

1. Training the L1–HMM transition probabilities. The bi-
nary input trace is transformed into a sequence of PRRs
(in [0,1]) computed over a window sizeW. We define a
continuous HMM withQ1 states and beta emission dis-
tributions and use the EM algorithm to estimate by max-
imum likelihood its beta parameters (which we then dis-
card) and its transition probabilities, given the sequence
of PRRs. We obtain good initial values for the beta pa-
rameters by runningk–means on the PRR sequence.

2. Clustering theW-windows. After learning the parame-
ters of the L1–HMM, we used the Viterbi algorithm [9]
to obtain the most likely state sequence for each input
trace, and grouped into the same cluster all windows as-
signed to the same state. Practically speaking, this tends
to group windows associated with similar PRR values.

3. For each long-term state, we trained its L2–HMM or
L2–MMB model only on its corresponding cluster:

• L2–HMM: we used again the EM algorithm for
HMMs (now having univariate Bernoulli emission
distributions), resulting in the L2–HMM transi-
tion probabilities and the Bernoulli parameters for
each of theQ2 short-term states.

• L2–MMB: we used an EM algorithm for MMBs
as described in [3], resulting in the proportion and
BernoulliW-dimensional vector for each of theM
mixture components.

3.4.3 Reasons for a Multi-level Model
Instead of a multi-level approach like the M&M model, it

is possible to model packet traces using just a L1–model hav-
ing continuous emission distributions, which represent PRR
computed over a windowW, to capture the long term dynam-
ics and the short term dynamics using the PRR value from
the L1 emission distribution as the Bernoulli parameter for
each of theW values in the window. This model is equivalent
to the M&M model, wherein (i) for the L2–HMM, Bernoulli
emission probability values for both states isc, and (ii) for
the L2–MMB,M = 1 and the vector of Bernoulli parameters
of lengthW is p = c×(1, . . . ,1) wherec is the PRR outputted
by the emission distribution of the L1–model. The model
would only capture the long-term PRR dynamics. However,
in a pure L1–model, we can see that the short-term corre-
lations are not captured correctly because each value in the

W-length window is now independent and hence, uncorre-
lated to its neighbors. When training, the duration of our
longest data traces was 12 hours. The level of long-term dy-
namics for traces up to 12 hours can be accounted for using
the M&M model. For longer duration traces, of the order of
days, months, year, the level of long-term dynamics might
be greater than that of the 12 hour traces. For modeling such
traces, a 2-level model may not suffice. However, the current
modeling approach can be easily extended to longer time-
scales using a N-level hierarchy.
3.5 Evaluation of the M&M model

To evaluate the performance of our approach, we trained
models for links with different reception rates from the ex-
perimental data traces (training set, length = 230400). As the
problem is unsupervised (there is no ground truth to com-
pare with) and the generated sequences can have any length,
we do not compare the likelihood value that the models pro-
duce for a trace. Instead, we compare on the basis of sta-
tistics computed on the traces versus a different set of un-
seen data traces (testing set) having similar PRR characteris-
tics. For each link, we proceeded as follows: (1) We learned
the model parameters given the (training set) data traces; we
tried both versions (L2–HMM and L2–MMB), different win-
dow lengthsW (though most of our results are forW = 128),
and different values ofQ1, Q2 andM (model size). (2) For
each model, we sampled a sequence as long as computa-
tionally possible (to reduce the variability in our statistics).
(3) From this sequence, we computed the following statistics
and compared them with the same statistics computed for the
testing set (different from the training set):

1. PRR, to assess the long-term behavior of a link.

2. Distributions of run lengths of 1’s,r1(n), and 0’s,r0(n),
for n = 1,2, . . . This assesses both the global and lo-
cal behavior. The run length (RL) distribution estimate
is defined on a range independent of the data, namely
[1,∞). Different RL distributions can easily be com-
pared (e.g. with theLp distance) and have statistics de-
fined on them (e.g. variance). Each new bit changes the
RL distribution in a localized way: it adds 1 to the ap-
propriate run length. The information about long bursts
is easily seen by looking at the tail of the RL distribu-
tion, and can be enhanced by having each run of length
L count asL, instead of 1. We term this,weighted run
length (WRL)distribution. It is similar to the RL dis-
tribution except that it enhances the longer runs. In
figures 5, 7 and 9, we plot theWRL distributions to
emphasize the occurrence of long runs of 1’s and 0’s.

3. The conditional packet delivery function (CPDF) [16]
C(n), defined as the conditional probability of observ-
ing a 1 aftern consecutive 1’s or 0’s. This assesses both
the global and local behavior. The CPDF estimate is de-
fined only on a range[0,R] whereR is the length of the
longest run, which depends on the data sequence. It is
not defined beyondR because no such run is observed.
In fact, even in that range,C(n) is highly sensitive to
the sequence, particularly for the largern. CPDFs are
sensitive to the appearance of a single burst which adds
an area of probability approximately equal to 1 around



Test M&M TOSSIM
Trace PRR Avg.L1-norm NND Avg. L1-norm NND
PRR Mean±StdDev CPDFs RL CPDFs RL PRR CPDFs RL CPDFs RL
0.469 0.481±0.010 0.09 0.004 37.2 1.882 0.417 0.698 0.029 40.6 2.8
0.520 0.507±0.001 0.39 0.049 7.4 1.961 0.002 0.990 1.026 4238 207
0.614 0.620±0.011 0.22 0.002 1.7 0.131 0.115 0.680 0.201 12.5 1.9
0.621 0.608±0.008 0.26 0.003 4.1 0.232 0.146 0.746 0.193 12.5 1.9
0.675 0.765±0.004 0.31 0.038 7.3 1.175 0.001 0.902 0.523 6965 181
0.706 0.727±0.002 0.11 0.004 180 1.744 0.225 0.859 0.180 261 5.2
0.723 0.778±0.002 0.32 0.043 73.8 2.523 0.116 0.854 0.204 111 4.1
0.728 0.700±0.002 0.10 0.006 25.6 1.303 0.270 0.844 0.135 159 5.2
0.886 0.900±0.001 0.06 0.007 3.2 1.303 0.001 0.979 1.001 80 227
0.906 0.883±0.001 0.11 0.017 21.1 1.086 0.065 0.941 0.210 40.6 8.3

Table 4. Comparison between empirical traces (testing set)and simulation traces using the M&M model and TOSSIM.

n = L/2 whereL is the burst length. This happens no
matter how long the trace is and no matter how often
such bursts occur, as long as they occur at least once.
Each new bit (1/0) in the sequence changes a possibly
large part of the CPDF (up to the whole of it). Thus,
CPDFs are good for detecting a burst of 1/0’s but not
suitable for determining the frequency of 1/0’s. It is dif-
ficult to compare CPDFs from different datasets as the
length of the largest burst will vary from sequence to
sequence. While one can eliminate alld values having
less than a minimum number of runs, this loses infor-
mation by essentially truncating the tail.

3.5.1 Comparing RL and CPDF Distributions
To compare differences in the distributions of the run

lengths and CPDFs of the testing and simulated traces, we
can compute the averageL1-norm between them. However,
when computing the averageL1-norm, the difference in the
two distributions is weighted equally for the common cases
i.e., short runs/bursts of 1/0s and for the rare cases i.e., very
long runs of 1/0s. The absence of rare cases in the simu-
lated traces does not significantly affect theL1-norm between
the two distributions, thereby potentially misrepresenting the
performance of a modeling approach. The inability of a
modeling approach to account for the rare cases is a seri-
ous shortcoming for simulation users as they will not be able
to adjust the behavior of algorithms/protocols for such cases
which will eventually result in failure under real world con-
ditions. On the other hand, the L1-norm would exaggerate
the difference between traces from the same model when the
length of the long runs/bursts varies slightly. To highlight
the effect of the absence of rare cases and that of minor dif-
ferences between rare cases from the same model, we de-
signed a new metric called the Nearest Neighbor Distance.
Although this is not the only way to emphasize the impor-
tance of rare events, it worked well in our case.
Nearest Neighbor Distance (NND): Let P and Q be two
functions, each defined on a (possibly different) subset of
the natural numbers. In our case,P and Q are the RL or
CPDF distributions from the empirical and simulated traces,
and we consider the RL distribution to be defined only
where its value is positive. We define a non-symmetric dis-
tanceD(P,Q) as the sum over all the existing entriesi of
P of the following: |P(i) − Q(i)| if Q(i) is defined, and

1 2

1 2

100

100

P

Q

D(P,Q) = |P(1)−Q(1)| + |P(2)−Q(2)| +

|P(100)−Q(2)| + |100−2|/1000

D(Q,P) = |Q(1)−P(1)| + |Q(2)−P(2)|

Figure 6. Computing the distance between two distribu-
tions P and Q. In this illustration, P is defined at1, 2 and
100, and Q is defined at1 and 2 only.

|P(i)−Q( j)| + α| j − i| if Q(i) is not defined, wherej is the
closest entry toi for which Q( j) is defined. That is,D(P,Q)
behaves like theL1 distance where bothP andQ are defined,
and like a penalizedL1 distance to the closest entry where
Q is defined, otherwise. We choseα = 1/1000 empirically.
Figure 6 shows a sample calculation ofD(P,Q) andD(Q,P).
NND is then computed as(D(P,Q)+ D(Q,P))/2, which is
now symmetric.

3.5.2 M&M Simulation Results
We tried many different values forQ1, Q2 andM before

settling onQ1 = 6, Q2 = 2 andM = 20. Table 3 shows
the difference between the PRRs for models simulated us-
ing HMMs and MMBs at the second level. Our reason-
ing behind trying different level-2 models was to settle on
a particular approach. However, our results do not show a
significant difference between the two proposed level 2 ap-
proaches for our choice ofQ1, Q2 and M. Table 4 shows
comparisons between the test traces and the simulated traces
from the M&M model. The average difference between the
PRR of the simulated and the test link PRR is less than 2.5%
whereas the average standard deviation in the PRR of the
simulated M&M links is 0.004. The worst case difference in
PRR is 9%. Table 4 also shows the difference between the
run length and CPDF distributions in terms of the average
L1-norm and theNND. The minimum difference between
the CPDFs in terms of the averageL1-norm and theNND
is 0.06 and 1.7, respectively, and the maximum difference is
0.39 and 180, respectively. For the run lengths, the minimum
difference in terms of the averageL1-norm and theNND is



W NND Training Vectors per State
8 5.55 4800
16 3.43 2400
32 2.75 1200
64 2.45 600
128 1.45 300
160 1.27 240
192 1.25 200

Table 5. Difference between CPDFs distributions for
M&M traces with L2–MMB and different values of W.

0.002 and 0.131, and the maximum difference is 0.049 and
2.5, respectively. The maximum difference between the dis-
tributions occurred when the M&M model is not able to sim-
ulate the longer runs/bursts as seen in the testing trace andis
captured by theNND computations.

3.6 Sensitivity Analysis
3.6.1 Dependence on Window Size W

The role ofW in the M&M model is to split the respon-
sibilities between the L1 and L2 levels. In principle, mov-
ing the modeling responsibility entirely to L1 (by making
W = 1) or to L2 (by makingW very large) could work by
having a very large number of parameters in L1 or L2, re-
spectively. In practice it would not, because it would require
a far larger training set and the model would be plagued with
local optima of bad quality. Essentially, the short and long-
term description is a divide and conquer strategy, and could
be applied in general with a hierarchy of levels. Besides,
long-term transitions can happen no faster than everyW bits,
which puts an upper limit (although very large in our traces)
onW. Good choices ofW are obtained in this paper by trial
and error of a few reasonable values, while ensuring that the
number of parameters in each model is both small enough
yet adequate to model the data.

In Figure 7, we plot the effect of variation in window size
for W = 8 on the quality of the packet loss model for a given
link (refer Figure 5(a) for original training set link). Results
for W = 128 are shown in Figure 5(c). From Figure 7, we
see that at small values ofW, the transitions between the
long-term dynamics of the link are not captured accurately in
the transition matrix of the underlying HMM-based model.
As window size increases, models with higher values ofW
(W = 128) show similar variation in long term dynamics as
the original link. Also, from Figure 7, we see that for small
W (= 8), the model is unable to account for the longer runs
of 1’s and 0’s as seen in the original link. In contrast, the
model forW = 128 has longest run of 64 1’s (original link
has 74 1’s) and 100 0’s (original link has 120 0’s). This is re-
flected in values of theNNDas shown in Table 5. In Table 5,
we see that theNND decreases asW increases, indicating
that models with largerW are able to adequately capture the
longer runs of 1’s and 0’s as seen in the original link. As
seen in Table 5, asW increases beyond 128, theNND does
not show significant change. Also, we observe that the num-
ber of training sequences for the L2–MMB in each state get
reduced. Fewer sequences result in inadequate training of
the model and lead to local optima problems. Due to this
reason, we limit maximumW to 128.

3.6.2 Dependence on Frequency of Sending Packets
during Data Collection

During data collection for building the M&M model, we
sent fixed size packets at a frequency of 64Hz or 64 packets
per second (pps) in our experiments. In contrast, earlier stud-
ies [23] have collected the same data at a lower frequency
(4Hz). To analyze the dependence of frequency of sending
packets during the data collection phase on the quality of our
model, we reduced the amount of data used for creating the
model from the original 64Hz down to 1Hz. Figure 8 shows
the variation in reception rates for the same link modeled us-
ing different amounts of data. From Figures 8(a), 8(b), 8(c)
and 8(d), we see that as the frequency increases, the greater
amount of data used for creating the model helps the simu-
lated trace follow the behavior of the original trace (see Fig-
ures 5(a)) very accurately at long and short time scales.
3.7 Modeling Links without Existing Packet

Reception Traces
For simulation of links in WSNs, we create a library of

K M&M models p1(X), . . . , pK(X), whereX represents a
binary sequence, and eachpk is the distribution for thekth
M&M model, each estimated as described earlier for a link
with a different average reception rateρk. (Note that the PRR
of an M&M model is the mean of an infinite sequence gen-
erated from it, which can be computed from the stationary
distribution of the HMMs and the mean of the MMBs.) Dur-
ing a simulation, the user might request a link model with a
specific PRRρ that is not available in the existing database.
In order to accommodate such requests, we propose two ap-
proaches that blend or modify existing models to come up
with a model of the desired average PRR, as follows.
3.7.1 Mixing Models

We define the distribution of the target as a mixture of the
K library distributions

p(X) =
K

∑
k=1

λkpk(X)

such that∑K
k=1 λk = 1 and∑K

k=1 λkρk = ρ; the latter follows
from the fact that the average PRR of modelk equalsρk.
The library should include the all–0 and all–1 models (with
PRRs 0 and 1, respectively) so we are able to bracket any
desired PRR. In the particular case where we just mix the
two models with PRRs bracketingρ (ρk ≤ ρ ≤ ρk+1) this
has a unique solution, otherwise there are infinite ways of
mixing the models having the desired PRR. In this approach,
we should make eachX a sequence as large as possible to
maximize use of the transition probabilities of eachpk(X),
since concatenating differentXs to create a simulated trace
will result in discontinuities at the concatenation points.
3.7.2 Modifying Emission Probability Distributions

Instead of mixing multiple models, our second approach
selects a reference model (say, the one with closest PRR) and
changes its emission probability parameters to match the de-
sired PRR. This is simply done by incrementing or decre-
menting all thep Bernoulli parameters (in either the L2–
HMM or L2–MMB case) by a constant, whose value can
be determined analytically so that the resulting average PRR
equals the target.
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Figure 7. Simulated M&M trace with L2–MMB and W = 8. Small window sizes cannot capture transitions between
long term dynamics accurately. Longer run lengths of 1’s and0’s are not captured by models with smallW.
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(b) Freq. = 4Hz (or 4pps)
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(c) Freq. = 16Hz (or 16pps)
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Figure 8. Dependence on frequency of sending packets duringdata collection.

3.8 M&M Simulator
In order to make the M&M model accessible to WSN sim-

ulation users, we have incorporated it in the TOSSIM sim-
ulator for TinyOS 2.0. The M&M simulator provides the
end user the capability to simulate a network with links hav-
ing different PRRs. Using the approaches described in Sec-
tion 3.7, we have created a library of M&M models with
intermediate PRRs ranging from 0% to 100%. The simula-
tor generates PRR traces using these pre-computed models
and utilizes the values (1/0) in the trace to make a decision
regarding the link quality. In addition, the simulator can re-
execute PRR traces generated in prior experiments or user
supplied traces to allow for deeper analysis of link quality
on program execution. The files required for the M&M sim-
ulator are available at [11].

4 Performance Comparisons with TOSSIM
communication model

We conducted a statistical comparison between empirical
data traces (testing set), simulation traces from the M&M
model, and traces from TOSSIM, the TinyOS simulation en-
vironment. TOSSIM requires a link gain model wherein a
unidirectional link between a source and destination is as-
sociated with a gain value i.e., the received signal strength
between the source and destination. For simulating traces in
TOSSIM, for each of the empirical traces (testing set), we

computed the median RSSI value of the received packets in
the traces. We used this as the gain for the link gain model
for the TOSSIM links.

TOSSIM utilizes a communication model called Clos-
est Pattern Matching (CPM) [16]. In order to utilize CPM,
users must first collect a high-frequency noise trace from
a deployed WSN that will be used to bootstrap the noise
model. As mentioned in Section 3.1, we used theRssiSam-
ple application to collect these traces from the same envi-
ronment where we collected our packet reception traces (re-
fer Table 6). To compare the performance of TOSSIM with
the proposed M&M model, we bootstrapped the TOSSIM
noise model using traces collected from the SE and Mote-
Lab testbeds. The Signal-to-Noise Ratio (SNR) is computed
using noise values generated by the CPM model. Using this
SNR value, the corresponding PRR value is determined us-
ing a SNR-PRR curve [7, 29]. The packet reception status
(success/fail) for a packet is decided by sampling once from
a Bernoulli distribution withp = PRR.

Figure 9 shows the variation in PRR of a particular link
and the simulated traces generated using TOSSIM and the
M&M model trained on the same link. The goal of Fig-
ure 9 is to qualitatively contrast the link quality variation
in simulation traces from TOSSIM and the M&M models
with respect to an original link manifesting complex link dy-



Parameters Values
802.15.4 Channel 26
Num. Noise Samples 196,608
Noise Sampling Period 1ms

Table 6. Data collection parameters for the CPM model.

namics. It is clear from Figure 9(b) that TOSSIM is unable
to capture the long term variations in PRR that are better
modeled by the M&M model (see Figure 9(c)). Further-
more, the average PRR of the M&M link (26.7%) is closer to
the original link PRR (28.47%) than the TOSSIM link PRR
(49.49). Figures 9(a), 9(b) and 9(c) show the weighted run
length and CPDF distribution of 1’s and 0’s for the original
link, TOSSIM simulation trace and M&M simulation trace,
respectively. From the figures, it is clear that TOSSIM is
not able to simulate the longer runs of 1’s and 0’s. This is
also reflected in theNND computed for the TOSSIM and
M&M traces. TheNND for the run length distribution of
the TOSSIM and M&M traces is 4.07 and 0.51, respectively.
The NND for the CPDF distribution of the TOSSIM and
M&M traces is 82.2 and 21.2, respectively. These values
indicate that quantitatively the M&M traces are closer to the
original traces than the TOSSIM traces.

Table 4 shows the summary of the comparison between
the empirical traces (testing set) and traces generated using
TOSSIM and the M&M model. The first point to notice is
that there are significant differences in PRR between the ac-
tual link and TOSSIM model with a minimum difference of
5% and a maximum of 88%). In contrast, the M&M model
has a maximum and minimum difference in PRR of 9% and
0.1%, respectively. The maximumNND for the run length
distribution of the TOSSIM and M&M traces is 226.9 and
2.5, respectively. The maximumNND for the CPDF distri-
bution of the TOSSIM and M&M traces is 6965 and 180,
respectively. These values indicate that quantitatively the
M&M traces are closer to the (unseen) testing traces than
the TOSSIM traces. The combined knowledge of the dif-
ference in PRRs and the averageL1-norm andNND values
for the distributions of run lengths and CPDFs indicate that
TOSSIM does not do an adequate job of modeling the link
variations. We believe the poor performance of TOSSIM can
be explained by the inadequate characterization by the path
loss model and the noise model. Currently, TOSSIM uses
the gain of the link and the noise value computed by CPM to
decide whether the packet is received or dropped. However,
the generic constants of the path loss model are not the same
for all environments. This leads TOSSIM to make significant
errors while computing the PRR of a packet at the receiver.
In addition, the CPM model, while good at simulating the
variation in noise values, only makes the PRR estimate of
the TOSSIM more conservative or pessimistic by including
the noise information and preventing some packets to be de-
livered when there is a peak in the noise levels.

5 Discussion
Relevance to Other Analytical Models: The Gilbert-Elliott
model [10, 8] is a particular case of the M&M model where
we have a single-bit window (W = 1) andQ1 = 2 level–1
states; and each level–1 state has a single-component MMB

(M = 1, L2–MMB) or a single-state HMM (Q2 = 1, L2–
HMM). Its only tunable parameters are the level–1 transition
probabilities and the level–2 Bernoulli parameters (total4
parameters). The generality of our model allows us to model
and learn from data, not just bursts, but far more complex be-
haviors. The Markov-Based Trace Analysis (MTA) [13] is an
extension of the Gilbert-Elliott model wherein one state cor-
responds to the “error free” state of the channel and the other
state is comprised of a discrete time Markov chain of order
6 to model the “lossy” state of the channel. This was further
extended to account for variability in wireless links by using
a hierarchical model with multiple states [14], where each
state is comprised of a 2-state MTA-based model. Salama-
tian et al. [24] used Hidden Markov Models with Bernoulli
emission distributions for modeling packet reception traces
from Internet communication channels. Their model is a
particular case of the M&M model with single-bit window
(W = 1) andQ1 ≤ 4 level–1 states; and each level–1 state has
a single-component MMB (M = 1, L2–MMB) or a single-
state HMM (Q2 = 1, L2–HMM). Their study concluded that
HMMs with up to 4 states are adequate for modeling packet
traces that have constant error probabilities and a very low
level of dynamics. The hierarchical Markov Model (hMM)
proposed by Khayam et al. [12] was comprised of a two state
Markov model embedded inside each state of another two
state Markov model. Their study concluded that compared
to hMMs, Markov chains of order 9 (i.e., 29 states) are re-
quired for accurate models of the bit error process.
Model Selection and Interpretation: Our choice of model
is not unique; for example, we could use more than two
levels of dynamics. However, we find the proposed model
sufficiently powerful while straightforward to train from ob-
served data. There is also a model selection tradeoff, where
using many parameters yields a powerful model but is more
prone to over-fitting and local optima. In addition, such mod-
els are computationally costly. On the other hand, using few
parameters may not yield a powerful enough model. We cur-
rently solve this by trial and error. This, and a detailed study
of the role of the window size, are topics for future work. We
do not claim that the model’s parameters (e.g. the transition
probabilities) correspond to physical factors (e.g. a shadow
caused by opening a door), although it is possible that it does.
Model Adaptation: As our model is trained using packet
reception data, this methodology presents several caveatsfor
users of our simulation model: (1) Although, the model is
highly accurate for data collected from a given environment,
a simulation user would be limited to simulating their net-
work based on conditions during the data collected at the
SE and MoteLab testbeds. (2) If the user wants to simulate
network conditions in a particular environment, (s)he should
collect at least some packet reception traces in the target en-
vironment. In many settings, the benefits from a pure data-
driven approach are not that large because the generalizabil-
ity of simulating from traces is a big limitation. For example,
one would like to model the characteristics of a real environ-
ment in a simulated network without having to first deploy
a network to measure its properties or by collecting signifi-
cantly smaller data traces than the one used to train the model
in a different environment. This problem can be solved by
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Figure 9. Average PRR over time from (a) experimental 1-hourdata trace, (b) TOSSIM simulated trace and (c) simu-
lated trace using the M&M model (L2–MMB), respectively. On the right side we see the statistics for each link for the
weighted run lengths and CPDFs of packet reception (top) andlosses (bottom).



using model adaptation techniques and will be addressed in
our future work.
User Control: The M&M model is a purely data-driven ap-
proach. It is possible to combine this with a non-adaptive
approach so that the user may have manual control on spe-
cific characteristics (such as the amount of overall burstiness
or fading rate) while still generating realistic traces. Future
work could propose hybrid models containing a large num-
ber of parameters that are automatically tunable on a train-
ing set (e.g. the Bernoulli parameters), and a small number
of “control” parameters that are set by the user. In fact one
example of this is our combination of models of Section 3.7,
where the within-model parameters are trained and the mix-
ing proportions or the Bernoulli parameters can be chosen by
the user. For example: consider a MMB havingW = 6 and
M = 2. πi ’s indicate mixture proportions andpi ’s indicate
Bernoulli parameters for the mixture components. In this
mixture, if the user wants the model to output increased runs
of 1’s of length 3 and runs of 0’s of length 2, then the goal
can be easily achieved by changing the mixture parameters
as shown below:

Before After

πi : (p1, ..., p6) π
′

i : (p
′

1, ..., p
′

6)

.6 : (.4, .7, .6, .7, .8, .5) → .6 : (.4, .2, .9, .9, .9, .2)

.4 : (.4, .3, .3, .2, .2, .6) → .4 : (.4, .3, .9, .1, .1, .9)

Similar to the above example, it is possible using a simple
heuristic to find Bernoulli parameter values above/below a
certain threshold (0.6 and 0.2 in the example) equal to the
length of the required bursts and adjust them and their neigh-
boring parameter values to ensure bursts of required lengths.

6 Conclusions and Future Work
We presented a new multi-level Markov model (M&M)

to replicate more realistic short- and long-term dynamics in
wireless simulations. Our M&M model generalizes many
existing wireless link models, can model complex correla-
tions if sufficient parameters are used, and is straightforward
to learn from data and to sample from. New M&M models
can be created by mixing preexisting M&M models from a
library. Based on extensive evaluation using long experimen-
tal data traces collected in multiple testbed environments, we
showed that the model significantly outperforms other simu-
lation tools available in the WSN community.

There are multiple areas for future work. Regarding mod-
eling, one can use for the emission distribution restricted
Boltzmann machines, which are another powerful way of
representing high-dimensional binary data. We would also
like to optimize the likelihood over all parameters jointly,
although for the L2–HMM this may be rather complicated.
Transforming existing model parameters to simulate new en-
vironments using order of magnitude less training samples
by applying model adaptation techniques is part of our re-
search agenda. Moreover, the model can be extended to emit
signal strength values, thus, modeling physical layer charac-
teristics such as RSSI values of wireless traces. Furthermore,
we would like to perform further evaluation comparing sim-
ulations with application performance in real environments.

7 Acknowledgments
We would like to thank the reviewers and our shepherd,

Dr. Jie Liu for their advice and thoughtful comments. This
work was supported in part by the Department of Energy
and the California Energy Commission, and performed un-
der U.S. Department of Energy Contract No. DE-AC02-
05CH11231 and the California Institute for Energy and the
Environment under contract No. MUC-09-03.

8 References
[1] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A max-

imization technique occurring in the statistical analysis
of probabilistic functions of markov chains.The Annals
of Mathematical Statistics, 41(1):164–171, 1970.

[2] C. M. Bishop. Pattern Recognition and Machine
Learning. Springer-Verlag, 2006.
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A Hidden Markov Models
A good description of HMMs and MMBs can be found in [2,
3]. A HMM models an observed sequence of (continuous or
discrete) vectors in terms of a sequenceq0, q1, . . . of hidden
(unobserved) random variables called states and a sequence

x0, x1, . . . of observed random variables (see fig. 4). The
HMM represents the probability of the observed sequence
in terms of thestate transition probability p(q = j|q = i)
(which assumes the Markov property and is independent of
time) between every pair of state values, and theemission
probability p(x|q= i) of outputting a vectorx when in statei.
The latter can be, for example, a Gaussian or beta (or mixture
thereof) for continuousx and a Bernoulli, multinomial (or
mixture thereof) or a simple probability table for discretex.
Thus, the probability of observingx0, x1, . . . ,xT is

p(x0,x1, . . . ,xT) = ∑
q0,...,qT

p(q0)
T

∏
t=1

p(xt |qt)p(qt |qt−1)

where the sum is over all possible state sequences. A HMM
is then described by the dimensionW of the observed vector
x, the number of state valuesQ, theQ×Q matrix of transi-
tion probabilitiesai j = p(q= j|q= i), and the parameters of
the emission distribution for each state value.

For simple emission distributions, the HMM parameters
(transition probabilities and emission parameters) can be
estimated given only a sequence of observed vectors{xt}
by maximum likelihood using an expectation maximization
(EM) algorithm [1], which iterates from initial parameter
values. This is the training or learning problem, and it is
possible to converge to a local optimum. The most likely
sequence of state values corresponding to an observed se-
quence can be obtained using the Viterbi algorithm. This is
the decoding problem. Sampling from a trained HMM given
an initial state value simply requires sampling states fromthe
transition probabilities and sampling anx for each state from
its emission distribution.

B Mixtures of Multivariate Bernoulli Distri-
butions

A Bernoulli distribution for a binary random variablex as-
signs probabilityp to x = 1 and 1− p to x = 0. A Bernoulli
distribution inW binary variables is the product ofW in-
dependent univariate Bernoulli distributions with parameter
vectorp = (p1, . . . , pW)T :

p(x) =
W

∏
i=1

pxi
i (1− pi)

1−xi .

A mixture distribution is constructed givenM component
distributionsp1(x), . . . , pM(x) andM component proportions
π1, . . . ,πM (with eachπm ∈ (0,1) and∑M

m=1 πm = 1):

p(x) =
M

∑
m=1

πmpm(x)

and, ifM > 1, then the components ofx are not, in general,
independent from each other; in fact, we can model com-
plex correlations this way. The parameters{πm,pm}

M
m=1 of

a mixture of multivariate Bernoulli distributions (MMB) can
be estimated given a collection ofN W-dimensional binary
vectors using an EM algorithm [3], which iterates from ini-
tial parameter values and can converge to a local optimum.
Sampling from a MMB simply requires picking a compo-
nent with probability proportional to its proportion, and then
sampling the binary vector from its Bernoulli.


