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Abstract
802.15.4 links experience different level of dynamics at

General Terms
Algorithm, Measurement, Performance, Design, Experi-

short and long time scales. This makes the design of a suit-mentation

able model that combines the different dynamics at differen
timescales a non-trivial problem. In this paper, we propose
novel multilevel approach involving Hidden Markov Models
(HMMs) and Mixtures of Multivariate Bernoullis (MMBS)
for modeling the long and short time scale behavior of wire-
less links using experimental data traces collected frofa mu
tiple 802.15.4 testbeds. We characterize the synthetesra
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1 Introduction

The common denominator in all wireless sensor networks

generated from the model of the wireless link in terms of sta- (WSNs), regardless of their underlying application, is the

tistical characteristics as compared to an empirical tndtle

use of the radio to communicate information extracted from

similar PRR characteristics, such as the mean and variancghe sensed environment and, more importantly, to coorelinat
of the packet reception rates from the data traces, compar-Wwith other nodes. Consequently, radio communication and

ison of distributions of run lengths and conditional packet
delivery functions of successive packet receptions (Iig) a

losses (0's). We modified TOSSIM to utilize data traces cre-

intelligent usage of the radio is a critical component ofewir
less distributed system in general and WSNs in particular.
Due to the low power nature of WSNs, the radio used for

ated using our modeling approach and compare them againsEommunication is especially susceptible to changes in the

the existing radio model in TOSSIM, which uses the Closest-

fit Pattern Matching model for modeling variations in noise
which affect the link quality. The results show that our pro-

quality of the wireless medium resulting in packet losses
which can be attributed to limited transmission power Igvel
as well as multipath effects resulting from lack of frequenc

posed modeling approach is able to mimic the behavior of diversity. Experiments [28] conducted with these low-powe

the data traces quite closely, with difference in packetpec

radio equipped sensor nodes have shown, using empirical

tion rates of the empirical and simulated traces of less thanmeasurements, that there exists a “gray area” within the com
2.5% on average and 9% in the worst case. Moreover, themunication range of sensor radios where the packet recep-
simulated links from our proposed approach were able to ac-tion varies widely. Data collected using SCALE [4], led to

count for long runs of 1's and 0's as observed in empirical
data traces.

Categories and Subject Descriptors

[.6.5 [Simulation and Modelingl: Model Devel-
opment—Modeling methodologies C.2.1 [Computer-
Communication Networks]: Network Architecture and de-
sign—Wireless communication
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the following conclusions: (i) no clear correlation betwee
packet delivery and distance in an area of more than 50% of
the communication range, (ii) temporal variations of packe
delivery are correlated with mean reception rate of eadf) lin
and (iii) percentage of asymmetric links in a sensor network
varies from 5% to 30%. These studies [28, 4, 5, 6, 25] help
confirm that low power wireless communication is unpre-
dictable, is sensitive to changes in the environment and is
known to significantly change over different time scales.

In systems research, a well-designed simulator provides
users with the ability to test new ideas in an inexpensive
manner. The simulator models the key elements of a given
system, for example: hardware such as the CPU, network
interfaces, sensors, etc. and software such as the oggratin
system. This allows the user to focus his attention on the de-
sign, testing and analysis of algorithms in a controlled and
repeatable environment. Recent studies [21, 15] have indi-
cated the presence of a wide chasm between the real world
radio channel behavior and existing radio channel models in



wireless simulators. This leads to significant differenices  model [10] is a probabilistic model for simulating burst
performance of a system in simulation as compared to a realnoise in data transmission channels. In this model, a Hid-
world deployment. Thus, improving wireless simulators by den Markov model with two states is used to generate noise
incorporating accurate and robust radio channel models wil bursts, the first state has zero probability of encounteaimg
reduce the gap between simulation and real-world perfor- error whereas the other state has a certain fixed non-zero
mance. To reach this goal, we believe it is required to cbllec probability for transmission errors. Analysis of trace8][2
data traces of packet reception information over long pisrio  for the AT&T Wavelan system concluded that loss behavior
of time at fine granularity. This data would be the seed for could not be accounted by the 2-state Markov model. They
creating radio channel models that would help simulate more proposed a methodology to model the error-free and error
realistic packet losses, thus helping application dessgime traces using exponential and Pareto distributions to model
crease the robustness of their applications by accounting i segments of the trace. Traces modeled [26] from measure-
simulation for losses in the wireless medium. ments of Internet packet loss compared between a Bernoulli
In this paper, we propose a novel multilevel approach in- model, 2-state Markov chain model akt! order Markov
volving Hidden Markov Models (HMMs) and Mixtures of chains to check for the accuracy of the loss estimation over
Multivariate Bernoullis (MMBs) for modeling the long and 38 stationary trace segments. They concluded that all these
short time scale behavior of links in wireless sensor net- models are inadequate as they could not accurately model
works, that is, the binary sequence or trace of packet re-losses in their dataset.
ceptions (1s) and losses (0s) in the link. In this approach, a

HMM models the long-term evolution of the trace (level 1) as T [T e

transitions among a set of unobserved, level-1 states.eThes | = i il

states typically correspond to a roughly constant packet re b9 R e s e Tt e 1 ey ety

ception rate (as determined by the data) and might corre- b il et = R R
s e ® o 8 8 .‘l. E_._—C I_‘ . ____‘;._

spond to different regimes of the link. Within each level-1 | B By [a|sTa oTalaTe S g !
state, the short-term evolution of the trace (level 2) is mod : ‘ ‘

eled by either another HMM or by a MMB. This captures the
faster, but not random, variations of the sequence of packet
receptions and losses. We characterize the syntheticstrace
generated from the model in terms of several statistical mea
sures: moments (mean and variance) of the distribution of
packet reception traces, run length distributions of paake
ceptions and of packet losses, and conditional packet-deliv
ery functions (CPDFs). To compare run length and CPDF
distributions, we designed a new metric called the Nearest-

Neighbor Distance. This metric aims to solve the problem of Figure 1. SE testbed: 25 groups of three nodes each sep-

comparing distributions with unequal supports. In additio  arated by a distance of 40cm. Nodes are placed at fixed
a full implementation of the M&M model for the TOSSIM  |ocations along the corridor ceiling of the building.

simulator is provided.

The rest of the paper is organized as follows: A review of
related work for modeling the behavior of wireless links is Markov-Based Trace Analysis (MTA) [13] and Multiple
provided in Section 2. In Section 3, we identify issues that MTA [14] approaches propose modeling channel errors by
need to be addressed to resolve the deficiencies in link mod-decomposing a trace with non-stationary properties into a
els for WSN simulators and propose a new Markov-based set of piecewise stationary traces consisting of “lossyd an
modeling approach for addressing these issues. Section 4error free” states. Lossy states exhibit stationarity,eveh
contrasts the modeling of links in existing WSN simulators a sequence of lossy states can be modeled by a traditional
against our proposed approach. Finally, in Section 5, we dis discrete time Markov chain (DTMC). In [24], HMMs were
cuss issues related to our modeling approach and in Section proposed for modeling packet reception traces and choosing

IO OO

summarize the results and discuss future work. a model based on the likelihood criterion. Markov-based sto
chastic chains were proposed [12] to model 802.11b channel
2 Background and Related Work behavior for bit errors and packet losses. The study com-

Models for characterizing the behavior of wireless links pared the performance of high order Markov chains, 2-state
have been a widely studied area in networking literaturg [22 Hidden Markov Models and hierarchical Markov Models
These studies can be classified into radio propagation mod-and concluded that Markov chains of order 9 (i.€.s&tes)
els and packet loss models. Radio propagation models pre-are required for accurate models for the bit error process.
dict the average received signal strength and its varigbili These studies helped reinforce the notion that for any mod-
at a given distance from the transmitter. In contrast, packe eling approach to simulate behavior of wireless links, the
loss models try to discover the underlying bursty packet los model needs to account for the long and short term varia-
distribution. Errors in packet reception can be attributed tions in the link quality. Also, the model should be easy to
causes such as interference in the channel and fading efirain and show close correlation between the input and the
fects which lead to irrecoverable bit errors. The Gilbert simulated data traces.



Testbed Program Num. Expts.  Duration  Num. Packets/Expt. 242C Tx power levels

SE RssiDemo 9 1 hour 230400 1-31
SE RssiDemo 1 6 hours 1382400 7
SE RssiDemo 3 12 hours 2764800 8,9,11
SE RssiSample 3 30 minutes 196608 -
MoteLab RssiDemo 18 30 minutes 115200 31
MoteLab RssiSample 3 30 minutes 196608 -

Table 1. Summary of experiments conducted on the MoteLab andStestbeds (Note: 802.15.4 channel 26 is used in all
experiments).

resentative model of a real environment.

In contrast, in this paper, we propose the modeling of cor-
relations between successive packet receptions andesilur
from a given packet reception trace as the packet reception
traces are a direct indicator of the link quality.

3 Wireless Link Modeling

3.1 Collection of Packet Reception Traces

In order to create an accurate packet loss model, we re-
quired a comprehensive database of packet reception traces
of links having different reception rates. For this task, we
collected data from a 75 node MotelV Tmote Sky testbed
deployed along the ceiling of the Science and Engineer-
ing Building (SE testbed). Each mote is comprised of an
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Figure 2. Variation of the average data throughput per ~ controller featuring 10KB of RAM, 48KB of flash and a
hour for all good and intermediate links in the network. 802.15.4 compliant Chipcon CC2420 radio (channel 26) for

wireless communication. The node locations are fixed for the
duration of our experiments (refer Figure 1 for details)l Al
2.1 TOSSIM the motes in a group are connected to a Linksys NSLU2 net-

TOSSIM [17] is a discrete event simulator for sensor net- WOrk storage device via an USB hub. The Linksys NSLU2
works running on the TinyOS operating system. It allows device is used to bridge serial communication between the
users to write TinyOS code in a simulation environment that Motes and a central server over the local network.
is scalable and bridges the gap between algorithm testithg an We performed a number of experiments to collect packet
application development. TOSSIM simulates behavior of the '€Ception traces from a diverse set of links (see Table 1). In
CPUs, radios and sensors in different sensor nodes, network€ach experiment, we have one fixed sender and multiple re-
ing stacks and other OS primitives. ceivers. The sender sends 64 packets per second with an

TOSSIM supports several radio models, namely the Sim- inter-packet interval of 16ms on channel 26 for durations of
ple Propagation model, the Link Layer model [29] and the 1, 6 and 12 hours. The receivers record the sequence num-

CPM model [16]. In the Simple Propagation model, ev- ber, received signal strength (RSSI) and link quality iadic

ery node can receive packets transmitted by any other node!©" (LQ!) values of each received packet. We also collected

The Link Layer model specifies the behavior of the wire- the same data from the Motelab testbed [27] but the duration

less link depending on the radio and the channel charac-Of each experiment was limited to 30 minutes due to storage
teristics for static and low-dynamic environments. CPM is CONCerns regarding the large amount of data generated in ev-
based on a statistical model created from noise readinggrac €Y 'Un- After each experiment, we created records or traces
collected from the deployment environment. It computes O_f packet reception for ea_ch of the receiver nodes. In addi-
the probability distribution of, given the noise readings U°N: We also gathered noise data (channel 26) for all nodes
(N, ™ _k-1,-.ne_1), wherek is the duration of noise his- using theRssBampIeprogr_am on both the testbeds. The
tory considered by the model. R= 0 would make each length of the noise traces Is equwalent to theyer— heavy .
noise value independent, whikeequal to the length of the  race collected in [16]. The noise traces are meant to be uti-
trace would provide an exact replay of the noise trace. In a 12€d for a faithful comparison between the TOSSIM simu-
recent paper [23], two approaches (Expected Value PMF andation model and our proposed approach.

Average Signal Power Value) were proposed to estimate the3.2 EXploratory Data Analysis

signal power of missing packets in a packet reception trace, In this section, we highlight issues that need to be ad-
and, using this data the CPM algorithm models the varia- dressed when modeling 802.15.4 wireless links. We term
tions in packet signal strength. These existing modelsirequ links having packet reception rate (PRR)10% as bad or

the modeling of two separate physical layer measurements,poor links, links having PRR between 10% and 90% as in-
namely, RSSI and noise/interference values to create a reptermediate links and links having PRR greater than 90% as
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Figure 3. Variation in PRR and RSSI by hour for a typical inter mediate quality link. Figure shows that PRR and RSSI
values are stable for short periods of time.

Exp. CC2420 Good Bad  Interm Inactive  consistent decrease in throughput from midnight to midday
#  Tx. Lvl. in all three experiments. From our experimental data, we
24 11 20(48%) 8(19%) 7(17%) 7(16%)  observed that good and bad links are relatively stable over
26 10  19(45%) 7(17%) 3(7%) 13(31%)  time whereas intermediate links show significant variaiion
28 8  19(45%) 10(24%) 3(7%) 10(23%) link quality over time. This is consistent with previous find

Table 2. Summary of variation of link quality in a net- ings reported in [4, 6]. In general, in simulation, it is easy

work as a function of sender radio transmission power. to model good links as they do not show significant varia-
tion with time [19, 23]. On the other hand, there is a sig-

nificant difference between the models of intermediateslink

in simulation and the real-world. If the accuracy of simula-
tion models of these intermediate links were improved, then
it is possible that WSN application simulations could show
the potential benefits of using these intermediate linksnwhe
their quality is high enough for transporting data inste&d o
permanently ignoring or blacklisting them. In addition, it
would help application designers to test performance of al-
gorithms for the common case, and the corner cases that are
one of the causes of protocol failure.

good links. Links having PRR= 0% are termed as inactive
links.

Prior studies have shown that 802.15.4 links can vary sig-
nificantly over time [4, 6, 18]. In Figure 2, the average net-
work throughput per hour averaged over all the links having
PRR> 10% in the network is shown as a function of time of
day for the 12 hour experiments. The figure clearly shows
that the average network throughput is not constant, but fluc
tuates with time. This is a clear indication of variation of
PRR across nodes in the network. The radio transmission To emphasize this point, we plot the variation in PRR and
power levels in experiments 24, 26 and 28, correspond to RSSI of a representative intermediate link. For this lirde(s
values 11, 10 and 8 in the CC2420 registers. This would leadFigure 3), the PRR is plotted as a function of time, where
one to think that, the throughput should be highest for éxper each PRR value is calculated for a two second interval (i.e.,
ment 24, followed by level 26 and 28, respectively. However, for 128 consecutive packets at a time). Figure 3 also shows
from the data, we see that the throughput for experiment 24 the corresponding variation in RSSI values of the received
is less than that of the others. This can be explained by thepackets. From Figure 3, we see that the average PRR of link
higher total number of intermediate links (see Table 2) com- 1 is 42%, 65% and 19% for hours 1, 2 and 3, respectively
pared to the other experiments. An interesting artifacheft  and the corresponding average RSSI values are -91.85 dBm,
environment can be see in Figure 2, which shows a fairly -91.8 dBm and -91.67 dBm, respectively. In each hour, we



00011111, 10001110, 00011111, 00011110, Original Simulated PRR  Simulated PRR
PRR by L2-HMM by L2-MMB
MeantStdDev  Mear:-StdDev
0.31 0.34+ 0.004 0.31+ 0.010
0.59 0.614 0.006 0.56+ 0.005
0.61 0.62+- 0.002 0.62+ 0.002
0.62 0.594+ 0.004 0.61+ 0.006
0.71 0.68+ 0.010 0.69+ 0.002
0.72 0.704+ 0.019 0.71+£ 0.007

t=0

Figure 4. Graphical model of a HMM which emits binary
strings x; of length 8. In the M&M model, this is the L1-
HMM, and p(x|q;) is itself a HMM or a MMB.

see that the PRR and RSSI values fluctuates widely, cycling
between good, intermediate and bad states. In each state, t
link is relatively stable for a given period of time befordges
nificant change in link quality. A closer look at the sequence
of received packets within few tens of seconds reveals that
packet receptions and losses are not independent i.a-, inte
mediate links show significant bursty behavior. This shows
that links of intermediate quality manifest highly dynamic
behavior over time at different time scales, thus highliggnt

the non-trivial nature of the modeling problem for such §ink

3.3 Our Modeling Approach

We consider our observed data as binary sequences where

1 indicates successful packet reception and 0 indicatés los
or corrupted packets. (We will also consider a sequence of
continuous values, namely the reception ratefjd] indi-
cating the average over a binary window.) The fundamen-
tal motivation for our modeling approach is that observed
traces display structure at different temporal scales.ign F
ure 5(a), for example, one can see that over a period of min-
utes the link seems to switch between two states: one with
PRR~ 0.6 and the other with PRR: 0.8. We call this the
long-term dynamicsin a period of seconds, however, while
the PRR may stay roughly constant a6,0it is more likely

to observe a bursty sequen@@)0111111 than a wildly os-
cillating sequencé&010101101. We call this theshort-term
dynamics In order to simulate realistically the behavior of
links, we want a model that is flexible enough to replicate
this multiscale structure, and we want to estimate its param
eters (which determine its typical PRRs or its local bursti-

Table 3. Summary Statistics of Links: Comparison be-
tween the original trace and simulated traces from the
M &M model using HMMs and MMB, respectively. Both
the L2 modeling approaches work well for simulating the
behavior of the traces.

variations in consecutive packet reception successeslor fa
ures that has its own parameters (described below). Wius,
controls the tradeoff of short vs. long term. In this papex, w
studied two types of short-term, or level-2, modp(g|q):

e A hidden Markov model (L2-HMMJhis has (1) a set
of Q. short-term states (different from those of the L1—
HMM) and its oan% transition probabilities, and (2)
a (univariate) Bernoulli emission distribution with pa-
rameterp. Thus, this is a sequential model: to emit
aW-window we sampléV times from the L2-HMM.
Note that the L2-HMM for long-term statdnas its own
parameters, different from those of the L2-HMM for a
different long-term stat¢.

e A mixture of multivariate Bernoulli distributions (L2—
MMB). This mixture has/ components, and each com-
ponent hasV + 1 parameters: a mixture proportion
and a vectomp = (py,...,pw) of Bernoulli parame-
ters. Thus, this is not a sequential model: to emit a
W-window we pick a component at random (according
to their proportions) and then we sample from\l¥s
dimensional Bernoulli thgV-window at once.

We report experimental results with both models be-
low. In both models, using a sufficiently large number of
short-term state€» or mixture component$/ allows us
to model arbitrarily complex distributions @-dimensional
binary windows; for example, more or less bursty sequences.
Importantly, note that if we modele@(x|q) as a single
Bernoulli (i.e.,M = 1), then bits within the window would be

ness) from observed traces. We now describe the details ofindependent from each other, leading to unrealisticaltyl-os

our model, theMulti-level Markov (M &M) model; appen-
dices A-B give an overview of hidden Markov models and
mixtures of multivariate Bernoulli distributions.

3.4 The Multi-level Markov (M & M) Model

We model a possibly infinite binary sequence (the data
trace) as @equence of binary strind&/indows)x; of length
W, as shown in Figure 4. Aevel-1 hidden Markov model
(L1-HMM) with Q, different statesy = 1,...,Q1 models
transitions between long-term states, and Qgstunable
parametersy; (the transition probabilitiep(q = j|q=1i)).
Each long-term statg has its own distributiorp(x|q) of
emitting binaryW-windows, which captures the short-term
behavior of the link in that state—that is, the dynamics of the

lating behavior. The average PRR of a long-term sitase
the mean of its emission distributigrix|q = i).

Next, we explain how to simulate a binary trace from our
model (sampling), and how to estimate good model parame-
ters from measured data (learning).

3.4.1 Sampling

In order to generate a trace of lendthbits from the

model, we sample as follows:

1. Generate a long-term state sequence of lehgit us-
ing the transition probabilities of the L1-HMM.

2. For each long-term statpof this sequence, we sample
aW-window x from its p(x|q) (i.e., the corresponding
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L2-HMM or L2—-MMB). W-length window is now independent and hence, uncorre-
The trace is the concatenation of th&V windows. lated to its neighbors. When training, the duration of our
3.4.2 Learning longest data traces was 12 hours. The level of long-term dy-
In a machine learning approach, estimating the parame-namics for traces up to 12 hours can be accounted for using
ters of a probabilistic model is usually done by maximizing the M&M model. For longer duration traces, of the order of
the log-likelihood of a given data set (one or more observed days, months, year, the level of long-term dynamics might
traces) over all the model parameters (transition probabil be greater than that of the 12 hour traces. For modeling such
ties for all short- and long-term states, mixing proporsion  traces, a 2-level model may not suffice. However, the current
Bernoulli parameters). For our multilevel HMM this can modeling approach can be easily extended to longer time-
be quite complex and time-consuming, so in this paper we scales using a N-level hierarchy.
follow a simpler learning algorithm that is slightly subbpt 3.5 Evaluation of the M& M model
mal but faster and relatively robust to local optima, by first To evaluate the performance of our approach, we trained
estimating the L1-HMM transition probabilities, and then models for links with different reception rates from the ex-
estimating the L2-HMM transition probabilities or the L2— perimental data traces (training set, length = 230400) has t
MMB parameters. The training process is as follows: problem is unsupervised (there is no ground truth to com-

1. Training the L1-HMM transition probabilities. The bi- Pare with) and the generated sequences can have any length,
nary input trace is transformed into a sequence of PRRsWe do not compare the likelihood value that the models pro-
(in [0,1]) computed over a window six#. We define a duce for a trace. Instead, we compare on the basis of sta-
continuous HMM withQ; states and beta emission dis- tistics computed on the traces versus a different set of un-
tributions and use the EM algorithm to estimate by max- S€€n data traces (testing set) having similar PRR chaiscter
imum likelihood its beta parameters (which we then dis- ticS. For each link, we proceeded as follows: (1) We learned
card) and its transition probabilities, given the sequence the model parameters given the (training set) data traces; w
of PRRs. We obtain good initial values for the beta pa- tried both versions (L2-HMM and L2-MMB), different win-
rameters by running-means on the PRR sequence. ~ dow lengthsV (though most of our results are fof = 128),

, , , and different values of1, Q2 andM (model size). (2) For

2. Clustering th&V-windows. After learning the parame-  g5ch model, we sampled a sequence as long as computa-
ters of the L1-HMM, we used the Viterbi algorithm [9]  {ionally possible (to reduce the variability in our statis).
to obtain the most likely state sequence for each input (3) From this sequence, we computed the following stasistic
trace, and grouped into the same cluster all windows as- 3n4 compared them with the same statistics computed for the
signed to the same state. Practl_cally_ speaklng, this te”dstesting set (different from the training set):
to group windows associated with similar PRR values. 1. PRR, to assess the long-term behavior of a link.

2. Distributions of run lengths of 1's;(n), and 0'sro(n),
forn=12,... This assesses both the global and lo-
cal behavior. The run length (RL) distribution estimate
is defined on a range independent of the data, namely
[1,0). Different RL distributions can easily be com-
pared (e.g. with thé& p distance) and have statistics de-
fined on them (e.g. variance). Each new bit changes the
RL distribution in a localized way: it adds 1 to the ap-
propriate run length. The information about long bursts
is easily seen by looking at the tail of the RL distribu-
tion, and can be enhanced by having each run of length
L count ad., instead of 1. We term thisyeighted run
length (WRL)distribution. It is similar to the RL dis-
tribution except that it enhances the longer runs. In

3. For each long-term state, we trained its L2—HMM or
L2-MMB model only on its corresponding cluster:

e L2-HMM: we used again the EM algorithm for
HMMs (now having univariate Bernoulli emission
distributions), resulting in the L2-HMM transi-
tion probabilities and the Bernoulli parameters for
each of th€, short-term states.

e L2-MMB: we used an EM algorithm for MMBs
as described in [3], resulting in the proportion and
Bernoulliw-dimensional vector for each of tiv
mixture components.
3.4.3 Reasons for a Multi-level Model
Instead of a multi-level approach like the M&M model, it
is possible to model packet traces using just a L1-model hav-

ing continuous emission distributions, which represenRPR
computed over a windoW, to capture the long term dynam-

ics and the short term dynamics using the PRR value from
the L1 emission distribution as the Bernoulli parameter for

each of th&V values in the window. This model is equivalent
to the M&M model, wherein (i) for the L2-HMM, Bernoulli
emission probability values for both statescjsand (ii) for
the L2-MMB, M = 1 and the vector of Bernoulli parameters
oflengthWisp=cx(1,...,1) wherecis the PRR outputted

figures 5, 7 and 9, we plot th&/ RL distributions to
emphasize the occurrence of long runs of 1's and O’s.

. The conditional packet delivery function (CPDF) [16]

C(n), defined as the conditional probability of observ-
ing a 1 aftem consecutive 1's or 0’s. This assesses both
the global and local behavior. The CPDF estimate is de-
fined only on a rang®, R] whereR is the length of the
longest run, which depends on the data sequence. Itis
not defined beyon& because no such run is observed.

by the emission distribution of the L1-model. The model
would only capture the long-term PRR dynamics. However,
in a pure L1-model, we can see that the short-term corre-
lations are not captured correctly because each value in the

In fact, even in that rangeG(n) is highly sensitive to

the sequence, particularly for the larger CPDFs are
sensitive to the appearance of a single burst which adds
an area of probability approximately equal to 1 around



Test M&M TOSSIM

Trace PRR AvgLi-norm NND Avg. L1-norm NND

PRR MeanStdDev CPDFs RL CPDFs RL PRR CPDFs RL CPDFs RL

0.469  0.48%0.010 0.09 0.004 37.2 1.882 0.417 0.698 0.029 40.6 2.8
0.520 0.50%0.001 0.39 0.049 7.4 1.961 0.002 0.990 1.026 4238 207
0.614 0.626:0.011 0.22  0.002 1.7 0.131 0.115 0.680 0.201 125 1.9
0.621  0.608:0.008 0.26  0.003 4.1 0.232 0.146 0.746 0.193 125 1.9
0.675 0.7650.004 0.31 0.038 7.3 1.175 0.001 0.902 0.523 6965 181
0.706  0.72%£0.002 0.11  0.004 180 1.744 0.225 0.859 0.180 261 52
0.723  0.7780.002 0.32 0.043 73.8 2.523 0.116 0.854 0.204 111 4.1
0.728  0.708:0.002 0.10 0.006 25.6 1.303 0.270 0.844 0.135 159 5.2
0.886  0.906:0.001 0.06  0.007 3.2 1.303 0.001 0.979 1.001 80 227
0.906 0.883-0.001 0.11  0.017 21.1 1.086 0.065 0.941 0.210 40.6 8.3

Table 4. Comparison between empirical traces (testing seénd simulation traces using the M&M model and TOSSIM.

n=L/2 whereL is the burst length. This happens no — D(RQ) = |P(1) — QL) + [P(2)—Q(2)| +
matter how long the trace is and no matter how often © H IP(100)— Q(2)| + 100 2]/1000
such bursts occur, as long as they occur at least once. N ‘
Each new bit (1/0) in the sequence changes a possibly |1 2 100
large part of the CPDF (up to the whole of it). Thus,
CPDFs are good for detecting a burst of 1/0’'s but not Q|| D(Q.P) =Q(1) -P(1)| + 1Q(2) - P(2)|
suitable for determining the frequency of 1/0’s. It is dif- | ‘
ficult to compare CPDFs from different datasets as the 12 100
length of the largest burst will vary from sequence to
sequence. While one can eliminate dNalues having
less than a minimum number of runs, this loses infor-
mation by essentially truncating the tail.

3.5.1 Comparing RL and CPDF Distributions
To compare differences in the distributions of the run IP()—Q(j)| + a|j—i| if Q(i) is not defined, whergis the

lengths and CPDFs of the testing and simulated traces, Wecjosest entry ta for which Q(j) is defined. That isD(P,Q)
can compute the average-norm between them. However,  pehaves like the; distance where both andQ are defined,
when computing the averadg-norm, the difference inthe  anq jike a penalizet; distance to the closest entry where
two distributions is weighted equally for the common cases Qs defined, otherwise. We chose= 1/1000 empirically.
i.e., short runs/bursts of 1/0s and for the rare cases egy, v Figure 6 shows a sample calculationfP, Q) andD(Q, P).

long runs of 1/0s. The absence of rare cases in the SIMU-\ND is then computed aD(P.Q) + D(Q. P))/2, which is
lated traces does not significantly affect thenorm between  ow symmetric. ’ ’

the two distributions, thereby potentially misrepresegthe

performance of a modeling approach. The inability of a 3.5.2 M&M Simulation Results

modeling approach to account for the rare cases is a seri- We tried many different values f&@;, Q, andM before

ous shortcoming for simulation users as they will not be able settling onQ; = 6, Q2 = 2 andM = 20. Table 3 shows

to adjust the behavior of algorithms/protocols for suctesas the difference between the PRRs for models simulated us-
which will eventually result in failure under real world con  ing HMMs and MMBs at the second level. Our reason-
ditions. On the other hand, the L1-norm would exaggerate ing behind trying different level-2 models was to settle on
the difference between traces from the same model when thea particular approach. However, our results do not show a
length of the long runs/bursts varies slightly. To hightigh significant difference between the two proposed level 2 ap-
the effect of the absence of rare cases and that of minor dif-proaches for our choice @;, Q, andM. Table 4 shows
ferences between rare cases from the same model, we deeomparisons between the test traces and the simulated trace
signed a new metric called the Nearest Neighbor Distance.from the M&M model. The average difference between the
Although this is not the only way to emphasize the impor- PRR of the simulated and the test link PRR is less th&#2
tance of rare events, it worked well in our case. whereas the average standard deviation in the PRR of the
Nearest Neighbor Distance IND): Let P andQ be two simulated M&M links is 0004. The worst case difference in
functions, each defined on a (possibly different) subset of PRR is 9%. Table 4 also shows the difference between the
the natural numbers. In our cade,and Q are the RL or run length and CPDF distributions in terms of the average
CPDF distributions from the empirical and simulated traces Lji-norm and theNND. The minimum difference between
and we consider the RL distribution to be defined only the CPDFs in terms of the average-norm and theNND
where its value is positive. We define a non-symmetric dis- is 0.06 and 17, respectively, and the maximum difference is
tanceD(P,Q) as the sum over all the existing entriesf 0.39 and 180, respectively. For the run lengths, the minimum
P of the following: |P(i) — Q(i)| if Q(i) is defined, and  difference in terms of the averagig-norm and theNND is

Figure 6. Computing the distance between two distribu-
tions P and Q. In this illustration, P is defined atl, 2 and
100 and Q is defined atl and 2 only.



W  NND Training Vectors per State

8 5.55 4800
16 3.43 2400
32 275 1200
64 245 600
128 1.45 300
160 1.27 240
192 1.25 200

Table 5. Difference between CPDFs distributions for
M&M traces with L2-MMB and different values of W.

0.002 and 0131, and the maximum difference i049 and
2.5, respectively. The maximum difference between the dis-
tributions occurred when the M&M model is not able to sim-
ulate the longer runs/bursts as seen in the testing tracesand
captured by th&lND computations.

3.6 Sensitivity Analysis
3.6.1 Dependence on Window Size W

The role ofW in the M&M model is to split the respon-
sibilities between the L1 and L2 levels. In principle, mov-
ing the modeling responsibility entirely to L1 (by making
W =1) or to L2 (by makingW very large) could work by
having a very large number of parameters in L1 or L2, re-
spectively. In practice it would not, because it would regui
a far larger training set and the model would be plagued with
local optima of bad quality. Essentially, the short and long

3.6.2 Dependence on Frequency of Sending Packets
during Data Collection

During data collection for building the M&M model, we
sent fixed size packets at a frequency ofi@ér 64 packets
per second (pps) in our experiments. In contrast, earliek st
ies [23] have collected the same data at a lower frequency
(4H2). To analyze the dependence of frequency of sending
packets during the data collection phase on the quality of ou
model, we reduced the amount of data used for creating the
model from the original 6dz down to Hz Figure 8 shows
the variation in reception rates for the same link modeled us
ing different amounts of data. From Figures 8(a), 8(b), 8(c)
and 8(d), we see that as the frequency increases, the greater
amount of data used for creating the model helps the simu-
lated trace follow the behavior of the original trace (seg Fi
ures 5(a)) very accurately at long and short time scales.
3.7 Modeling Links without Existing Packet

Reception Traces

For simulation of links in WSNs, we create a library of
K M&M models pi(X),..., px(X), whereX represents a
binary sequence, and eaph is the distribution for thekth
M&M model, each estimated as described earlier for a link
with a different average reception raie (Note thatthe PRR
of an M&M model is the mean of an infinite sequence gen-
erated from it, which can be computed from the stationary
distribution of the HMMs and the mean of the MMBs.) Dur-
ing a simulation, the user might request a link model with a

term description is a divide and conquer strategy, and could specific PRRp that is not available in the existing database.

be applied in general with a hierarchy of levels. Besides,
long-term transitions can happen no faster than evébijts,
which puts an upper limit (although very large in our traces)
onW. Good choices dfV are obtained in this paper by trial

In order to accommodate such requests, we propose two ap-
proaches that blend or modify existing models to come up
with a model of the desired average PRR, as follows.

3.7.1 Mixing Models

and error of a few reasonable values, while ensuring that the  \we define the distribution of the target as a mixture of the
number of parameters in each model is both small enoughi fibrary distributions

yet adequate to model the data.

In Figure 7, we plot the effect of variation in window size
for W = 8 on the quality of the packet loss model for a given
link (refer Figure 5(a) for original training set link). Rdts
for W = 128 are shown in Figure 5(c). From Figure 7, we
see that at small values #¥, the transitions between the
long-term dynamics of the link are not captured accurately i
the transition matrix of the underlying HMM-based model.
As window size increases, models with higher valuegJof
(W = 128) show similar variation in long term dynamics as
the original link. Also, from Figure 7, we see that for small
W (= 8), the model is unable to account for the longer runs
of 1's and O’s as seen in the original link. In contrast, the
model forW = 128 has longest run of 64 1's (original link
has 74 1's) and 100 0’s (original link has 120 0’s). This is re-
flected in values of thBIND as shown in Table 5. In Table 5,
we see that th&lND decreases a#/ increases, indicating
that models with largew are able to adequately capture the
longer runs of 1's and 0’s as seen in the original link. As
seen in Table 5, &4/ increases beyond 128, theND does

not show significant change. Also, we observe that the num-

ber of training sequences for the L2-MMB in each state get

K
P(X) = S Akbk(X)
k=1

such thats X ; Ax = 1 andSK_; A\epk = p; the latter follows
from the fact that the average PRR of mo#tetqualspy.
The library should include the all-0 and all-1 models (with
PRRs 0 and 1, respectively) so we are able to bracket any
desired PRR. In the particular case where we just mix the
two models with PRRs bracketing (px < p < pks1) this
has a unique solution, otherwise there are infinite ways of
mixing the models having the desired PRR. In this approach,
we should make eacK a sequence as large as possible to
maximize use of the transition probabilities of eggiiX),
since concatenating differeMts to create a simulated trace
will result in discontinuities at the concatenation points
3.7.2 Modifying Emission Probability Distributions
Instead of mixing multiple models, our second approach
selects a reference model (say, the one with closest PRR) and
changes its emission probability parameters to match the de
sired PRR. This is simply done by incrementing or decre-
menting all thep Bernoulli parameters (in either the L2—

reduced. Fewer sequences result in inadequate training oHMM or L2-MMB case) by a constant, whose value can

the model and lead to local optima problems. Due to this
reason, we limit maximuriV to 128.

be determined analytically so that the resulting average PR
equals the target.
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Figure 8. Dependence on frequency of sending packets durirdata collection.
3.8 M&M Simulator computed the median RSSI value of the received packets in

In order to make the M&M model accessible to WSN sim- the traces. We used this as the gain for the link gain model
ulation users, we have incorporated it in the TOSSIM sim- for the TOSSIM links.
ulator for TinyOS 2.0. The M&M simulator provides the  TogSSIM utilizes a communication model called Clos-
end user the capability to simulate a network with links hav- st pattern Matching (CPM) [16]. In order to utilize CPM,
ing different PRRs. Using the approaches described in Sec-gers must first collect a high-frequency noise trace from
tion 3.7, we have created a library of M&M models with 5 geployed WSN that will be used to bootstrap the noise
intermediate PRRs ranging from 0% to 100%. The simula- jqdel. As mentioned in Section 3.1, we used ResiSam-
tor generates PRR traces using these pre-computed modelgje application to collect these traces from the same envi-
and utilizes the values (1/0) in the trace to make a decision yonment where we collected our packet reception traces (re-
regarding the link quality. In addition, the simulator c& 1 fer Taple 6). To compare the performance of TOSSIM with
execute PRR traces generated in prior experiments or usegpe proposed M&M model, we bootstrapped the TOSSIM
supplied traces to allow for deeper analysis of link quality nsise model using traces collected from the SE and Mote-
on program execution. The files required for the M&M sim- | a1, testheds. The Signal-to-Noise Ratio (SNR) is computed
ulator are available at [11]. using noise values generated by the CPM model. Using this
4 Performance Comparisons with TOSSIM SNR value, the corresponding PRR value is determined us-

communication model ing a SNR-PRR curve [7, 29]. The packet reception status

We conducted a statistical comparison between empirical (Success/fail) for a packet is decided by sampling once from
data traces (testing set), simulation traces from the M&wm & Bernoulli distribution withp = PRR
model, and traces from TOSSIM, the TinyOS simulation en-  Figure 9 shows the variation in PRR of a particular link
vironment. TOSSIM requires a link gain model wherein a and the simulated traces generated using TOSSIM and the
unidirectional link between a source and destination is as- M&M model trained on the same link. The goal of Fig-
sociated with a gain value i.e., the received signal stfengt ure 9 is to qualitatively contrast the link quality variatio
between the source and destination. For simulating traces i in simulation traces from TOSSIM and the M&M models
TOSSIM, for each of the empirical traces (testing set), we with respect to an original link manifesting complex link-dy



Parameters Values
802.15.4 Channel 26
Num. Noise Samples 196,608

Noise Sampling Period 1ms
Table 6. Data collection parameters for the CPM model.

(M =1, L2-MMB) or a single-state HMM @, = 1, L2—
HMM). Its only tunable parameters are the level-1 transitio
probabilities and the level-2 Bernoulli parameters (tdtal
parameters). The generality of our model allows us to model
and learn from data, not just bursts, but far more complex be-
haviors. The Markov-Based Trace Analysis (MTA) [13] is an
extension of the Gilbert-Elliott model wherein one state co

namics. Itis clear from Figure 9(b) that TOSSIM is unable responds to the “error free” state of the channel and the othe
to capture the long term variations in PRR that are better state is comprised of a discrete time Markov chain of order
modeled by the M&M model (see Figure 9(c)). Further- 6 to model the “lossy” state of the channel. This was further

more, the average PRR of the M&M link (28%) is closer to
the original link PRR (287%) than the TOSSIM link PRR
(49.49). Figures 9(a), 9(b) and 9(c) show the weighted run
length and CPDF distribution of 1's and Q’s for the original
link, TOSSIM simulation trace and M&M simulation trace,
respectively. From the figures, it is clear that TOSSIM is
not able to simulate the longer runs of 1's and 0’'s. This is
also reflected in th&dND computed for the TOSSIM and
M&M traces. TheNND for the run length distribution of
the TOSSIM and M&M traces is 4.07 and 0.51, respectively.
The NND for the CPDF distribution of the TOSSIM and

extended to account for variability in wireless links byngsi

a hierarchical model with multiple states [14], where each
state is comprised of a 2-state MTA-based model. Salama-
tian et al. [24] used Hidden Markov Models with Bernoulli
emission distributions for modeling packet receptionésac
from Internet communication channels. Their model is a
particular case of the M&M model with single-bit window
(W =1) andQ; < 4 level-1 states; and each level-1 state has
a single-component MMBM = 1, L2-MMB) or a single-
state HMM Q2 = 1, L2-HMM). Their study concluded that
HMMs with up to 4 states are adequate for modeling packet

M&M traces is 82.2 and 21.2, respectively. These values traces that have constant error probabilities and a very low

indicate that quantitatively the M&M traces are closer te th
original traces than the TOSSIM traces.

level of dynamics. The hierarchical Markov Model (hMM)
proposed by Khayam et al. [12] was comprised of a two state

Table 4 shows the summary of the comparison betweenMarkov model embedded inside each state of another two

the empirical traces (testing set) and traces generated usi
TOSSIM and the M&M model. The first point to notice is

state Markov model. Their study concluded that compared
to hMMs, Markov chains of order 9 (i.e.2atates) are re-

that there are significant differences in PRR between the ac-quired for accurate models of the bit error process.

tual link and TOSSIM model with a minimum difference of
5% and a maximum of 88%). In contrast, the M&M model
has a maximum and minimum difference in PRR of 9% and
0.1%, respectively. The maximuldND for the run length
distribution of the TOSSIM and M&M traces is 226.9 and
2.5, respectively. The maximufdND for the CPDF distri-
bution of the TOSSIM and M&M traces is 6965 and 180,
respectively. These values indicate that quantitativlely t

Model Selection and Interpretation: Our choice of model

is not unique; for example, we could use more than two
levels of dynamics. However, we find the proposed model
sufficiently powerful while straightforward to train fronbe
served data. There is also a model selection tradeoff, where
using many parameters yields a powerful model but is more
prone to over-fitting and local optima. In addition, such mod
els are computationally costly. On the other hand, using few

M&M traces are closer to the (unseen) testing traces than parameters may not yield a powerful enough model. We cur-

the TOSSIM traces. The combined knowledge of the dif-
ference in PRRs and the averdgenorm andNND values

rently solve this by trial and error. This, and a detailedigtu
of the role of the window size, are topics for future work. We

for the distributions of run lengths and CPDFs indicate that g ot claim that the model’s parameters (e.g. the tramsitio

TOSSIM does not do an adequate job of modeling the link nropapilities) correspond to physical factors (e.g. a shad
variations. We believe the poor performance of TOSSIM can ¢5,sed by opening a door), although it is possible that isdoe

be explained by the inadequate characterization by the pat
loss model and the noise model. Currently, TOSSIM uses
the gain of the link and the noise value computed by CPM to
decide whether the packet is received or dropped. However
the generic constants of the path loss model are not the sam

for all environments. This leads TOSSIM to make significant

errors while computing the PRR of a packet at the receiver.

In addition, the CPM model, while good at simulating the

variation in noise values, only makes the PRR estimate of

the TOSSIM more conservative or pessimistic by including

the noise information and preventing some packets to be de

livered when there is a peak in the noise levels.

5 Discussion

Relevance to Other Analytical Models The Gilbert-Elliott
model [10, 8] is a particular case of the M&M model where
we have a single-bit windowN = 1) andQ; = 2 level-1

hl\/lodel Adaptation: As our model is trained using packet

reception data, this methodology presents several cafgats
users of our simulation model: (1) Although, the model is
'highly accurate for data collected from a given environment
@ simulation user would be limited to simulating their net-
work based on conditions during the data collected at the
SE and MoteLab testbeds. (2) If the user wants to simulate
network conditions in a particular environment, (s)he dtiou
collect at least some packet reception traces in the target e
vironment. In many settings, the benefits from a pure data-
“driven approach are not that large because the gener#lizabi
ity of simulating from traces is a big limitation. For exarapl
one would like to model the characteristics of a real environ
ment in a simulated network without having to first deploy
a network to measure its properties or by collecting signifi-
cantly smaller data traces than the one used to train thelmode

states; and each level-1 state has a single-component MMBin a different environment. This problem can be solved by
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ber of parameters that are automatically tunable on a train-
ing set (e.g. the Bernoulli parameters), and a small number
of “control” parameters that are set by the user. In fact one
example of this is our combination of models of Section 3.7,
where the within-model parameters are trained and the mix-
ing proportions or the Bernoulli parameters can be chosen by
the user. For example: consider a MMB havifg= 6 and

M = 2. m’s indicate mixture proportions ang’s indicate
Bernoulli parameters for the mixture components. In this
mixture, if the user wants the model to output increased runs
of 1's of length 3 and runs of 0’s of length 2, then the goal
can be easily achieved by changing the mixture parameters
as shown below:

Before After
6: (4,7,.6,.7,8.5 — .6:(4,.2.9.9.9.2)
4 (4,3.3.2.2,6) — .4:(4,.3.9.1.1.9)

Similar to the above example, it is possible using a simple
heuristic to find Bernoulli parameter values above/below a
certain threshold (8 and 02 in the example) equal to the

length of the required bursts and adjust them and their reigh
boring parameter values to ensure bursts of required length

6 Conclusions and Future Work

We presented a new multi-level Markov model (M&M)
to replicate more realistic short- and long-term dynanmcs i
wireless simulations. Our M&M model generalizes many
existing wireless link models, can model complex correla-
tions if sufficient parameters are used, and is straightodw
to learn from data and to sample from. New M&M models
can be created by mixing preexisting M&M models from a
library. Based on extensive evaluation using long expeatime
tal data traces collected in multiple testbed environmemnts
showed that the model significantly outperforms other simu-
lation tools available in the WSN community.

There are multiple areas for future work. Regarding mod-
eling, one can use for the emission distribution restricted
Boltzmann machines, which are another powerful way of
representing high-dimensional binary data. We would also
like to optimize the likelihood over all parameters jointly
although for the L2-HMM this may be rather complicated.
Transforming existing model parameters to simulate new en-
vironments using order of magnitude less training samples
by applying model adaptation techniques is part of our re-
search agenda. Moreover, the model can be extended to emi
signal strength values, thus, modeling physical layerayar
teristics such as RSSI values of wireless traces. Furthesmo
we would like to perform further evaluation comparing sim-
ulations with application performance in real environnsent
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A Hidden Markov Models
A good description of HMMs and MMBs can be found in [2,

3]. AHMM models an observed sequence of (continuous or
discrete) vectors in terms of a sequengeds, ... of hidden

Xo, X1,... Of observed random variables (see fig. 4). The
HMM represents the probability of the observed sequence
in terms of thestate transition probability (g = j|g=1)
(which assumes the Markov property and is independent of
time) between every pair of state values, and eh@ssion
probability p(x|q=1) of outputting a vectox when in staté.

The latter can be, for example, a Gaussian or beta (or mixture
thereof) for continuous and a Bernoulli, multinomial (or
mixture thereof) or a simple probability table for discrate
Thus, the probability of observing, X1,...,X7 IS

-
P(X0, X1, XT) = ) p(Qo)rlp(xt\qt)p(qt\qtfl)
Yo,---,.aT t=

where the sum is over all possible state sequences. A HMM
is then described by the dimensidhof the observed vector

X, the number of state valu€y the Q x Q matrix of transi-
tion probabilitiesajj = p(q= j|q=1), and the parameters of
the emission distribution for each state value.

For simple emission distributions, the HMM parameters
(transition probabilities and emission parameters) can be
estimated given only a sequence of observed vedbrs
by maximum likelihood using an expectation maximization
(EM) algorithm [1], which iterates from initial parameter
values. This is the training or learning problem, and it is
possible to converge to a local optimum. The most likely
sequence of state values corresponding to an observed se-
guence can be obtained using the Viterbi algorithm. This is
the decoding problem. Sampling from a trained HMM given
an initial state value simply requires sampling states fitoen
transition probabilities and sampling &ffior each state from
its emission distribution.

B Mixtures of Multivariate Bernoulli Distri-
butions

A Bernoulli distribution for a binary random variableas-

signs probabilityp to x =1 and 1— p to x= 0. A Bernoulli

distribution inW binary variables is the product ¥ in-

dependent univariate Bernoulli distributions with paréene

vectorp = (py,..., pw)":
wo -
p(X):Dpi'(lfpi) e

A mixture distribution is constructed givel component
distributionspi (x), . .., pm(X) andM component proportions
T,..., Ty (With eachriy, € (0,1) andy M 15, = 1):

M
p(x) = Zlﬂmpm(X)

and, ifM > 1, then the components &fare not, in general,
independent from each other; in fact, we can model com-
plex correlations this way. The parametérs,, pm}M_; of

a mixture of multivariate Bernoulli distributions (MMB) na

be estimated given a collection bf W-dimensional binary
vectors using an EM algorithm [3], which iterates from ini-
tial parameter values and can converge to a local optimum.
Sampling from a MMB simply requires picking a compo-
nent with probability proportional to its proportion, arigeh

(unobserved) random variables called states and a sequenceampling the binary vector from its Bernoulli.



